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a b s t r a c t

Multivariate analysis approaches provide insights into the identification of phenotype associations
in brain connectome data. In recent years, deep learning methods including convolutional neural
network (CNN) and graph neural network (GNN), have shifted the development of connectome-
wide association studies (CWAS) and made breakthroughs for connectome representation learning
by leveraging deep embedded features. However, most existing studies remain limited by potentially
ignoring the exploration of region-specific features, which play a key role in distinguishing brain
disorders with high intra-class variations, such as autism spectrum disorder (ASD), and attention
deficit hyperactivity disorder (ADHD). Here, we propose a multivariate distance-based connectome
network (MDCN) that addresses the local specificity problem by efficient parcellation-wise learning,
as well as associating population and parcellation dependencies to map individual differences. The
approach incorporating an explainable method, parcellation-wise gradient and class activation map
(p-GradCAM), is feasible for identifying individual patterns of interest and pinpointing connectome
associations with diseases. We demonstrate the utility of our method on two largely aggregated
multicenter public datasets by distinguishing ASD and ADHD from healthy controls and assessing
their associations with underlying diseases. Extensive experiments have demonstrated the superiority
of MDCN in classification and interpretation, where MDCN outperformed competitive state-of-the-art
methods and achieved a high proportion of overlap with previous findings. As a CWAS-guided deep
learning method, our proposed MDCN framework may narrow the bridge between deep learning and
CWAS approaches, and provide new insights for connectome-wide association studies.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The drive towards decoding functional activity and neural
ommunication of the brain network, or the connectome (Sporns,
ononi, & Kötter, 2005), enables us to understand the complex
elationship between individual brain network organization and
ehavioral phenotypes (Bargmann & Marder, 2013; Bullmore &
assett, 2011). Promising progress has been made in the past
ecade using neuroimaging techniques to identify brain network
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alterations underlying brain disorders (Fornito, Zalesky, & Break-
spear, 2015; van den Heuvel, Scholtens, & Kahn, 2019; van den
Heuvel & Sporns, 2019). To capture a rich set of connectome-
phenotype associations, the concept of connectome-wide associ-
ation studies (CWAS) suggests examining each brain connectivity
variation from the perspective of the global network level, rather
than in isolation (Shehzad et al., 2014). Recent CWAS investi-
gations have successfully identified functional disconnectivity in
neurodegenerative and psychiatric brain diseases (Sharma et al.,
2017; Yang et al., 2021; Ye, Mori, Chan, & Ma, 2019).

In practice, two main analytical strategies have been widely
used under the CWAS framework. Network-based statistical (NBS)
analysis (Zalesky, Fornito, & Bullmore, 2010) was the first pro-
posed CWAS method to avoid the multiple comparisons problems
caused by the massive univariate generalized linear model (GLM)
on each inter-voxel or inter-regional connectivity (Bellec et al.,
2015). Another strategy is multivariate distance matrix regression

(MDMR) (Milham, 2012; Shehzad et al., 2014). By estimating the

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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imilarity distance of brain connectivity vectors among individ-
als, MDMR allows for systematic quantification of connectome
eorganization across the whole-brain network without any prior
arameters, and achieves superior sensitivity to NBS in distin-
uishing neurological disorders (Yang et al., 2021). Overall, these
WAS methods have exhibited excellent statistical power to
ocate aberrant brain structures or functional connectivity under-
ying neuropsychological disorders (Lee et al., 2020; Lin, Ni, Tseng,
Gau, 2020; Sheng et al., 2022; Yang et al., 2016). Nevertheless,

he traditional statistical tools or machine learning implemented
n these approaches are often deficient in modeling high order
onlinear intrinsic attributes and are limited in their perfor-
ances. In addition, linking individual connectome variations

o brain disorders with heterogeneous manifestations remains a
ignificant challenge in CWAS implementation.
Deep learning is a different strategy for associating brain dis-

rders with complex brain network variations. For instance, em-
edding connectome features into a low-dimensional space while
reserving high-order nonlinear information, deep neural net-
orks, such as graph neural networks (GNN), enable end-to-
nd disease identification at the individual level with promising
erformances. With the advantage of capturing the structural
nformation contained within feature interactions in the graph
omain, GNN has recently gained tremendous interests in the
euroscience field. One straightforward GNN architecture is to
ake each brain region as a graph node and iteratively aggregate
igh-order connectivity message among regions (denoted as the
ndividual-graph architecture in this paper) (Kong et al., 2021;
tena et al., 2018; Li et al., 2019; Zhang, Tetrel, Thirion, & Bellec,
021; Zhao, Duka, Xie, Oathes, Calhoun et al., 2022). Another
ype of architecture represents a population of participants as
ne graph (denoted as population graph architecture in this pa-
er), where each node is encoded with individual connectome
eatures and each edge is manifested by inter-participant pheno-
ypic information (Huang et al., 2020; Parisot et al., 2018a). Both
rchitectures can predict individual neuropsychological disorders
ith performance similar to or surpassing that of convolutional
eural network (CNN) (Jiang, Cao, Xu, Yang, & Zaiane, 2020; Li
t al., 2021; Song et al., 2021).
However, existing GNN models potentially ignore local speci-

icity in the brain. One of the core challenges is to precisely
epresent the complex brain connectome using a graph structure.
rain connectome features are previously considered translation-
nvariant by conventional graph methods; however, it has been
riticized as too simplified to input whole brain connectome
eatures into model training or embed them as identical (Li et al.,
021, 2021). Evidences suggest that connectome spatial local-
ty plays a key role in characterizing neuropsychological pa-
ients into clusters while simultaneously locating disease-specific
euroimaging markers (Li, Satterthwaite, & Fan, 2017; Li, van
ol et al., 2014). Given that functional disrupted parcels are
ot spatially uniform distributed within the brain connectome,
onventional graph learning approaches (e.g. GCN and GAT) are
ncapable to fully model brain connectome reorganizations in
europsychological disorders. Unfortunately, few studies have
ddressed these issues.
In this regard, we propose a multivariate distance-based con-

ectome network (MDCN) to associate region-specific and tran-
lation-variant connectome representations with brain disorders.
he approach is inspired by the state-of-the-art CWAS approach,
DMR, where the classical brain connectome multivariate sta-

istical module (Shehzad et al., 2014) is developed by the end-to-
nd GNN framework by extending the population distance matrix
nto a graph-learning framework. To tackle the local specificity is-
ue, we propose to build locality-specific hyper-population graphs
o characterize populations into clusters by assessing similar-
ties among regional connectomes. In this regard, subtypes of
 1
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neuropsychological diseases with high intra-class variations are
preferable to be distinguished. Moreover, the network incorpo-
rating gradient and class activation maps facilitates model inter-
pretability and relate connectivity-disease relationships instead
of the conventional ANOVA-like analytic framework. We evalu-
ated our novel method on two multi-center imaging databases:
an Autism Spectrum Disorder (ASD) dataset, Autism Brain Imag-
ing Data Exchange (ABIDE), consisting of 1022 participants from
17 centers, and an attention deficit hyperactivity disorder (ADHD)-
200 global competition dataset, ADHD-200, with 572 participants
from four sites for distinguishing ADHD. The effectiveness and
robustness across various brain atlases and distance metrics were
tested to validate whether the proposed computing framework
could achieve both promising classification and interpretability.
Extensive experiments demonstrated that our proposed MDCN
provides new insights into connectome-wide association study.
In summary, our contributions are:

• We established a multivariate distance-based connectome
network (MDCN) to investigate the connectome reorgani-
zations associated with heterogeneous neuropsychological
disorders (i.e. ASD and ADHD) in a hyper-population graphs.
The derived multiple graphs contributing to hyper-edges
among individuals improve the connectivity representations
compared to those of the homogeneous relations in a single
graph.

• To address the spatial specificity in neuropsychological dis-
eases, we proposed to model inter-parcel connectome rep-
resentations by parcellation-wise attention and convolution
modules. Moreover, parcellation-wise gradient class activa-
tion maps were investigated for relating key signatures. Both
clinical explainability and high disease discriminative ability
were achieved.

• Our MDCN identified brain connectome reorganization as-
sociated with ASD and ADHD. Similar parcel-specific con-
nectome patterns suggest that the two disorders might fall
on the same disease continuum and are likely to share
overlapping neuropathological mechanisms.

2. Methodology

In the following sections, we first introduce the multivariate
distance graph construction in Section 2.1. The details of the pro-
posed MDCN are further investigated in Section 2.2. In addition,
a method, termed parcellation-wise gradient and class activation
map (p-GradCAM) to be used for interpretation is illustrated in
Section 2.3. Finally, the algorithm scratch of our method with
optimization is described in Section 2.4.

2.1. Multivariate distance graph construction

As shown in Fig. 1B, we calculated the distance between the
connectivity patterns for every possible pairing of participants in
a dataset, for each brain parcellation. The multivariate distance
graph summarizes the individual differences that incorporate
connectome features. The result was an N×N matrix of distances
among N participants for each region of interest. For instance, the
1st row or column of the matrix represents the (dis-) similarity
between the 1st participant’s whole-brain connectivity map and
that of all the other participants’.

Assuming that the atlas is parceled into M regions, the oper-
tion is carried out on each parcellation and repeated M times.
nd totally a sequence of distance matrices AS is obtained as
S

= (A1, A2, . . . , AM ) ∈ RN×N , where Ai denotes the distance
matrix built by the connectome features with respect to ROI i,
≤ i ≤ M . The distance matrix is obtained as follows, where



Y. Yang, C. Ye and T. Ma Neural Networks 164 (2023) 91–104

p
P

t
V
c

f

Fig. 1. The schematic representation of our proposed multivariate distance-based connectome network (MDCN) framework. (A) We first preprocessed the resting-state
functional MR images and built the functional brain connectome, where each region of interest (ROI) is represented by a vector of connectivity connected to the
region. (B) The functional connectivity derived from the processed functional MR images construct the multivariate distance graph incorporating the distance matrix.
This step is repeated for each parcel and finally a sequence of graphs in the number of M is obtained. (C) The obtained graphs are fed into the framework for
opulation and parcellation association learning by GCN and regional awareness convolution respectively. The parcellation association learning incorporates the
arcellation-wise Attention Layer (PAL) and Parcellation-wise Convolution Layer (PCL) modules for locating interests for each region.
he element aiu,v represents the similarity between two nodes V i
u,

i
v by calculating the distance measurement of the corresponding
onnectome features X i

u, X
i
v:

aiu,v = dis
(
X i
u, X

i
v

)
· [1 +

∑
F

γF (Fu, Fv)]

dis
(
X i
u, X

i
v

)
= exp(−

[ρ(X i
u, X

i
v)]

2

2σ 2 )

Here, a Gaussian probability density function was applied to
ormulate the distance in a Gaussian distribution with σ . The ρ

denotes the correlation distance and the other forms of distance
are discussed further in the experiments. In addition, the dis-
tance is determined based on the similarities of the phenotype
values, where F denotes the covariance. Age, sex and site ID were
included in our study. Function γ is formulated as follows:

γF (Fu, Fv) =

{
1 if |Fu − Fv| < Ft

0 otherwise

In particular, Ft represents the threshold for the corresponding
equipment type. Ft was set as 2 for age and 1 for sex and
site ID. Subsequently, we combine the regional feature vector
X S

= (X1, X2, . . . , XM ) and the adjacent matrix vector AS
=

(A1, A2, . . . , AM ) to form multiple graphs GS
=
(
G1,G2, . . . ,GM

)
.
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2.2. Population-wise and parcellation-wise learning

A scratch of the MDCN framework is shown in Fig. 1C in-
cluding a population association learning module and parcel-
lation association learning module. To tackle the local speci-
ficity problem, we build a subgraph for each parcellation, where
each subgraph is feasible to assess population similarities among
regional connectome features. Considering the numerous mul-
tivariate distance graphs across large aggregated populations,
we optimize the training process into two stages: population
association learning and parcellation association learning.

Population association learning. For each subgraph, we imple-
ment the graph convolution for capturing the correlation between
the participants and characterize them into clusters. In detail,
spectral graph theory extends the convolution operation to graph
structure data. The graph structure is represented by a Laplacian
matrix in spectral graph analysis, where the Laplacian matrix and
eigenvalues reflect the graph’s topology properties. The Laplacian
matrix is defined as L = D − A, where L ∈ RN×N is the Laplacian
matrix, A ∈ RN×N is the adjacency matrix, D is the degree matrix
of the graph, and N is the number of vertices. The eigenvalue
matrix was obtained by decomposing the Laplacian matrix with
L = UΛUT , where U is the Fourier basis and Λ ∈ RN×N is a
diagonal matrix. For each vertex i, the node feature is xi ∈ R.
Subsequently, the graph Fourier transform and inverse Fourier
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Fig. 2. The details of the regional awareness convolution network incorporating the p-GradCAM method. The backward gradients incorporating attention activations
are provided to facilitate interpretability. AVG: an average pool operation for aggregate features from H × M into 1 × M .
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ransform are defined as xi = UT xi and Uxi = Uxi, respectively.
The graph convolution of signals on graph is defined as gθ ⋆G xi =

UgθUT xi, where g denotes a graph convolution kernel and ⋆G
denotes a graph convolution operation on graph G. Moreover,
o simplify the calculation of the Laplace matrix, the K -order
hebyshev polynomials are adopted, which is defined as

θ (Λ) ≈

K∑
k=0

θkTk(Λ̃)

here Λ̃ =
2

λmax
Λ − IN , where IN is the identity matrix, and

max is the maximum eigenvalues of Λ. The θ ∈ R is a vector
of polynomial coefficients. The Chebyshev polynomial is defined
as Tk(x) = 2xTk−1(x) − Tk−2(x) recursively, where T0(x) = 1 and
T1(x) = x. With the K -order Chebyshev polynomials, the message
from 1 to K -hop neighbors is aggregated to the center node.

Parcellation association learning. After embedding a regional
connectome network into high order representations, the en-
coded representations are stacked into a sequence as F ∈ RM×H ,
hich is a compact representation of the whole brain network

or each sample. Conventional sequence models such as recurrent
eural network (RNN) (Mikolov, Karafiát, Burget, Cernocký, &
hudanpur, 2010), long-short term network (LSTM) (Sak, Senior,
Beaufays, 2014), and gated recurrent unit (GRU) (Chung, Gul-

ehre, Cho, & Bengio, 2014), can be applied for embedding spatial
eighborhood contextual information. However, these methods
re limited in capturing sequential representations in order and
ave deficiency in relating to global dependencies. In this re-
ard, we propose a regional awareness convolution network that
everages a parcellation attention module (PAM) to perform fea-
ure recalibration and adaptively concentrate on parcellations of
nterest.

As shown in Fig. 2, PAM aggregates the hidden features into
vector of size M to produce a parcellation descriptor. The

escriptor embeds the global distribution of the parcellation-wise
eature responses. Parcellation-specific activations are then fed
nto an excitation operation to govern the excitation of each
arcellation. The PAM is stacked in the first layer and generates a
arcellation awareness embedded features. PAM can be obtained
s follows:

˜ = x · σ (Wa2 · δ(Wa1
1
M

M∑
i=1

F i))

where σ and δ are the sigmoid and ReLU function respectively.
A bottleneck built by two fully connected layers with learn-
able weights Wa1 and Wa2 reduces and increases the embed-
ding dimension. The final output was obtained by rescaling the
transformation output with activations.
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Moreover, a parcellation-wise convolution module (PCM) layer
is leveraged to aggregate the spatial locality and relate topological
relationships within an ROI. A parcellation-wise convolution filter
is similar to a standard convolution layer with a kernel size of
H , and locally filter features within a region of interest. PCM
computes a weighted sum of features within an ROI, such as
a convolution aggregating the local information of a patch. To
improve the diversity of the embedding, multiple feature maps
are obtained using different distinct convolutions.

2.3. Parcellation-wise gradient class activation maps

The lack of interpretability of deep learning models limits
their clinical applications. Although the graph structural data lay
a foundation for interpretable modeling, GNN still suffers from
the opacity of information processing by mapping nodes and
links into embedding (Liu, Feng, & Hu, 2022). To probe black-box
neural network models, as well as for meaningful biomarker lo-
calization, we propose to provide parcellation-wise explanations
by localizing key signatures with gradient and class activation
maps. The activation maps are utilized to represent the impor-
tance as to which regions are responsible for the model’s decision,
while the gradient reflects the sensitivity changes. Related meth-
ods such as Grad-CAM++ (Chattopadhay, Sarkar, Howlader, &
Balasubramanian, 2018) and Grad-CAM (Selvaraju et al., 2017),
were originally proposed specifically for CNNs. In this study, we
modified the setting by referring to Grad-CAM++ and sought in-
sights in the attention module by considering the inner attention
activation map and attention gradients.

In detail, given a stacked input Fj for subject j, the regional
wareness convolution network outputs the classification score
c , and the activation maps of the parcellation-wise attention
odule Sc = σ (Wa2 · δ(Wa1

1
M

∑M
i=1 F

i
j )) with K feature maps,

instead of averaging global gradients; the weighted average of the
parcellation-wise gradients contributes to the overall decision.
This is obtained as follows:

wc
k =

∑
m

αkc
m relu(

∂Y c

∂Skm
)

The αkc
m denotes the weighting co-efficient for the gradient of

the parcellation m in terms of class c. By taking Y c
=
∑

k wc
k ·

m Skm into consideration, the weights can be finally obtained
ith high-order derivatives, which are formulated as:

c
k =

∂2Y c

(∂Skm)2

2 ∂2Y c
+
∑

Sk ∂3Y c
(∂Skm)2 m m (∂Skm)3
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The final maps R are obtained based on the weighted combi-
nation of the feature maps:

R = relu

(
K∑

k=1

wc
k · Skm

)

2.4. Optimization

Considering the increasing parameters of M graph networks,
t is difficult to optimize the framework simultaneously. The su-
ervised learning in our framework is decoupled into two stages:
ptimization of the graph convolution network and the regional
wareness convolution network.
In both stages, the embedded representations of the graph and

onvolution networks are averaged and classified by a two-layer
ultiple perception followed by a softmax function:

ˆ2 = softmax ((H2W21 + b21)W22 + b22)

where W and b are learnable parameters of a two-layer multi-
ple layer perceptions (MLP), as the readout function for embed-
ded connectome features. The loss function is formulated as a
cross-entropy function by learning from:

J = −

∑
n

[y(n) log
(
ŷn
)
+
(
1 − y(n)) log (1 − ŷn

)
]

A pseudo-algorithm is presented in Algorithm 1:
95
3. Experiments

3.1. Datasets

We examined resting-state functional MR images (fMRI) using
two largely aggregated multicenter datasets. (1) The first dataset
was the ABIDE-I database, where T1 structural brain images,
resting-state functional MR images, and phenotypic information
from 17 different imaging sites were aggregated for each patient.
The initial ABIDE-I included 505 individuals diagnosed with ASD
and 530 controls. A total of 502 sex-matched participants with
ASD and 520 HC were included in the evaluation in our study. (2)
The second dataset was the ADHD-200 database. The ADHD-200
dataset was first publicly released during an ADHD-200 global
competition. The training set of the competition was included as
a cohort including 488 healthy controls and 280 patients meet-
ing the Diagnostic and Statistical Manual of Mental Disorders-IV
(DSM-IV) criteria for ADHD. Age and sex-matched participants
(311 HC and 261 ADHD) from four centers were included. Table 1
summarizes the key demographic details and statistical results.

3.2. Preprocessing

The ABIDE-I dataset All images were preprocessed using the

configurable pipeline for the analysis of connectomes (C-PAC),
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Table 1
Statistical results on demographical information on two datasets. M and F denote
the numbers of the male and female. The average and standard deviation of age
are displayed (mean ± std).

Normal Patient F-statistic ANOVA p

ABIDE Sex (M/F) 445/75 443/59 1.264 0.206
Age (years) 17.21 (7.93) 17.06 (8.34) 0.303 0.762

ADHD-200 Sex (M/F) 230/81 209/52 1.728 0.085
Age (years) 11.50 (2.37) 11.18 (2.42) −1.599 0.112

including skull striping, slice timing correction, motion correc-
tion, global mean intensity normalization, nuisance signal regres-
sion with 24 motion parameters, and band-pass filtering (0.01–
0.08 Hz). Finally, the functional images were registered into the
standard anatomical space (MNI152) to allow cross-participant
comparisons. The nuisance variable regression was modeled us-
ing 24 motion parameters. The ABIDE dataset can be obtained
online.2

The ADHD-200 dataset: The images were preprocessed by the
Athena3 pipeline incorporating AFNI (Cox, 1996) and FSL (Smith
et al., 2004) neuroimaging tools. The preprocessed images are
publicly available and can be obtained online.4 The pipeline in-
volves removing the first four volumes, slice timing correction,
realignment to correct for motion, and linear transformation be-
tween the mean functional volume and the corresponding struc-
tural MRI. The functional images were transformed into MNI-152
space incorporating T1-weighted MRI into the MNI nonlinear
warp. Nuisance regression models were used to remove noise and
head drifts in the time series. The denoised time series was then
band-pass filtered (0.009 Hz–0.08 Hz).

The mean time series for a set of regions extracted from the
Schaefer template (Schaefer et al., 2018) were computed and
normalized to zero mean and unit variance. Pearson’s Correlation
Coefficient was used to measure functional connectivity. Regional
time series were obtained by extracting the Schaefer atlas, which
was parceled by a gradient-weighted Markov random field ap-
proach that identifies cortical parcels ranging from 100 to 1000
parcels. In our implementation, we employed the Schaefer atlas
with 100 parcels, termed Schaefer-100, for the main evaluation,
and tested classification performances and biological explana-
tions with Schaefer-200 and Schaefer-400 at different resolutions.
Each parcel was matched to a corresponding network in the
seven network parcellations by (Yeo et al., 2011) including the
default mode (DMN), visual, the somatomotor, dorsal attention,
salience/ventral attention, limbic, and control networks.

3.3. Implementations

Our experiments were carried out on an NVIDIA Tesla V100
with 32 GB memory. In the graph construction, the threshold Ft
was set as 2 for age, and 1 for sex and site ID respectively. The
σ in a Gaussian distribution is set as 2 and the ROI number in
this study is 100. A two-layer multi-layer perception followed by
a softmax layer is implemented as the classifier in MDCN. For
the MDCN, the K order of Chebyshev Polynomials is set as 3. The
GCN parameters including hidden size and number of layers are
optimized using a grid search, where the hidden size is in the
range of [8, 16, 32, 64], and graph convolution layers in [1, 2, 3].
A dropout is included to improve the generalization ability with

2 https://fcon_1000.projects.nitrc.org/indi/abide/.
3 http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:
thenaPipeline.
4 http://neurobureau.projects.nitrc.org/ADHD200/Introduction.html.
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a drop rate of 0.3. The learning rate within the network is set as
0.005, and the weight decay for regularization is 5e−4.

For a fair comparison with other state of the art methods
on the ABIDE/ADHD-200 dataset, we trained and tested our
model using 10-fold stratified cross-validation. The 10-fold cross-
validation facilitates the evaluation and comparison with the
state-of-the-art, where the strategy is adopted in most related
studies. Moreover, to evaluate the performance of comparative
methods, prediction accuracy (ACC), sensitivity (SEN), specificity
(SPE), F1 score (F1), and area under the curve (AUC) are used
for evaluation. Our MDCN is trained in a two-stage manner. In
the first stage, the representations are obtained for the second
stage of training when the validation loss reaches the lowest
in 500 epochs. The second stage fits the embedded features of
the training dataset and validation dataset and is trained in 500
epochs.

3.4. Competitive methods

To test the MCDN method, several CWAS-based methods and
deep learning models developed for the brain connectome learn-
ing were evaluated. These methods include (1) SVM: the func-
tional connectivity (FC) matrix with the upper triangle was flat-
tened to a vector form with 100 × 99/2 = 4950 features. A
support vector machine (SVM) is trained for classification. SVM
is considered a robust approach for classification and could also
be tested as a baseline for performance improvement comparison.
(2) NBS/MDMR-SVM (Shehzad et al., 2014; Zalesky et al., 2010):
The NBS and MDMR algorithms are two state-of-the-art CWAS
methods for revealing the widespread brain network reorga-
nization of diseases. In the experiments, numerous functional
connectivity features were filtered by NBS and MDMR to locate
and distinguish key connectome features. Given that the NBS
parameter threshold is difficult to choose, we determined this
value by a grid search in the range of 0.05 to 0.15 with steps
of 0.005, resulting in features with different sizes for NBS. In
addition, key regions with significant differences (p-value < 0.05)
were detected by MDMR, and connections among these regions
were selected as input features for MDMR. Finally, a support
vector machine was trained to evaluate the selected features.
(3) Graph convolutional network (GCN) (Parisot et al., 2018a):
We employed a semi-supervised GCN with features selected via
recursive feature elimination (RFE). Each node represents a sub-
ject, and the feature size of each node is reduced to 1000 by
RFE. Population similarities measured by age and site ID phe-
notypes were considered as the edge weight. The parameters
were set according to a previous study (Parisot et al., 2018a).
(4) BrainNetCNN (Kawahara et al., 2017): BrainNetCNN is pro-
posed to train the connectome matrix using convolution based
on edge-to-edge (E2E), edge-to-node (E2N), and node-to-graph
(N2G) layers. Two E2E layers with a channel size of 32, an E2N
layer with 64 output features, and an N2G layer with 30 output
features were used for training. The drop rate is set as 0.5 by
referring to the original architecture. (5) Brain Graph Neural
Network (BrainGNN) (Li et al., 2021): The BrainGNN proposed
ROI-aware graph convolutional layers and ROI-selection pooling
layers for neurological biomarker prediction at the group and in-
dividual levels, thus outperforming a series of fMRI image analysis
methods. We implemented the original network architecture and
modify the parameters by setting K(0) = K(1) = 16, d(0) =

100, d(1) = d(2) = 32, and tuning the λ1 and λ2 in a grid search of
(0, 1) with a step of 0.1. (6) Hypergraph Neural Network (HGNN)
(Feng, You, Zhang, Ji, & Gao, 2019) and Dynamic Hypergraph
Neural Network (DHGNN) (Jiang, Wei, Feng, Cao, & Gao, 2019):
the proposed hyperedges are feasible to capture distinctive asso-
ciations among parcellations. We follow the original architecture

https://fcon_1000.projects.nitrc.org/indi/abide/
http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline
http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline
http://neurobureau.projects.nitrc.org/ADHD200/Introduction.html
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Table 2
Comparisons of the classification performance (mean ± standard deviation) on ABIDE and ADHD-200 datasets with different models. The best result for each row is
shown in bold.
Dataset ABIDE ADHD-200

ACC SEN SPE F1 AUC ACC SEN SPE F1 AUC

SVM 65.56 ± 5.78 70.00 ± 7.86 60.99 ± 11.28 67.22 ± 6.82 71.42 ± 7.86 54.02 ± 6.98 36.08 ± 24.64 69.71 ± 15.61 37.55 ± 21.68 49.64 ± 15.57
NBS-SVM 63.51 ± 3.60 72.85 ± 6.44 53.80 ± 9.16 67.25 ± 3.15 67.04 ± 3.77 58.73 ± 7.46 49.34 ± 23.27 66.91 ± 13.54 49.61 ± 18.56 60.95 ± 11.55
MDMR-SVM 67.43 ± 5.14 72.11 ± 8.03 62.59 ± 11.87 69.20 ± 4.55 73.17 ± 6.18 56.20 ± 5.33 42.89 ± 24.74 67.85 ± 14.45 43.59 ± 20.12 55.64 ± 12.56
GCN 69.11 ± 3.21 67.09 ± 4.27 71.22 ± 3.17 66.37 ± 5.48 72.56 ± 3.21 61.02 ± 3.64 46.48 ± 9.34 70.12 ± 9.78 51.26 ± 5.40 55.78 ± 7.35
BrainGNN 69.31 ± 3.03 68.18 ± 11.05 68.64 ± 13.77 69.08 ± 5.77 69.52 ± 3.52 66.63 ± 5.41 70.10 ± 12.77 63.97 ± 10.79 66.04 ± 7.92 64.03 ± 3.88
BrainNetCNN 69.73 ± 2.76 66.73 ± 9.93 72.54 ± 8.26 67.73 ± 5.09 71.99 ± 3.06 63.77 ± 3.84 69.87 ± 12.76 58.37 ± 13.57 63.95 ± 4.83 62.97 ± 5.10
HGNN 70.96 ± 4.73 69.47 ± 8.06 77.25 ± 9.44 58.40 ± 16.12 69.37 ± 6.80 65.39 ± 4.22 64.63 ± 4.37 71.12 ± 12.92 59.12 ± 11.98 62.94 ± 4.70
DHGNN 71.45 ± 5.82 71.86 ± 16.89 71.20 ± 7.57 67.32 ± 15.93 72.39 ± 6.87 66.49 ± 5.27 64.35 ± 6.13 66.00 ± 14.48 60.32 ± 9.78 65.39 ± 5.33
HI-GCN 69.31 ± 5.14 73.00 ± 10.63 70.26 ± 4.57 71.95 ± 6.16 69.21 ± 5.14 64.23 ± 4.39 63.13 ± 11.94 66.19 ± 8.99 55.62 ± 9.74 58.97 ± 4.45
TE-HI-GCN 71.08 ± 5.41 72.38 ± 10.59 71.92 ± 8.87 71.24 ± 4.71 71.04 ± 5.53 66.55 ± 5.30 60.43 ± 15.02 62.64 ± 19.81 58.70 ± 15.31 61.54 ± 7.26
MDCN 72.41 ± 2.51 73.16 ± 8.82 71.73 ± 6.55 72.01 ± 4.12 73.91 ± 2.76 67.45 ± 5.32 71.97 ± 11.22 62.39 ± 11.24 66.86 ± 6.91 65.39 ± 6.04
and modify the classifiers for graph classification task. The hidden
size within [16, 32, 64, 128]. (7) Hierarchical GCN (HI-GCN) (Jiang
t al., 2020) and Ensemble of Transfer Hierarchical Graph Convo-
utional Networks (TE-HI-GCN) (Li et al., 2022): The hierarchical
rchitecture is proposed to associate graph topology information
ith the participants’ similarities. And multiple thresholds of
onnectivity are implemented to build graph kernels. For a fare
omparison with other networks, the transfer learning part is
iscarded. The original architecture is used and the ROI number
s set as 100.

. Results

.1. Evaluation of disease prediction

We evaluate the disease prediction performances in terms
f accuracy, sensitivity, specificity, F1-score and area under the
urve (AUC). As shown in Table 2, the proposed method sur-
asses the other related methods (72.41% ACC and 73.91% AUC
or ASD classification, and 67.45% ACC and 65.39% AUC for ADHD
lassification). Deep learning methods, such as BrainNetCNN and
rainGNN, outperform CWAS-based methods in terms of classi-
ication performance, indicating that the embedded underlying
onlinear interactions and dependencies can be used to improve
he representations and play a key role in diagnosis. Moreover,
n the classification of ASD, the MDMR-based model outper-
orms the NBS-based model (MDMR-SVM: 67.43% ACC; NBS-SVM:
3.51% ACC), while the opposite is true in the classification of
DHD (MDMR-SVM: 56.20% ACC; NBS-SVM: 58.73% ACC). The
ame is true for BrainNetCNN and BrainGNN, indicating that these
ethods are limited in their robustness and generalization ability
cross different tasks. Moreover, HGNN and DHGNN achieves
etter performances than BrainNetCNN and BrainGNN. This is
ecause the hyperedge mechanism could improve the learning
f associations among parcellations by distinctive measurements.
ompared with hyperedge, HI-GCN and TE-HI-GCN builds hier-
rchical structures to capture associations among parcelations,
hich is similar to the hyperedge mechanism. Accordingly, these
pproaches achieves comparable performances in most cases.
ompared with these methods, MDCN achieves the best on both
wo datasets.

In addition, the consistent improvements in both datasets
f our MDCN demonstrate the robustness of the model. These
mprovements may result from three causes. First, the functional
onnectome in high complexity is embedded with deep, complex,
nd nonlinear deep learning models. Convolutions are particu-
arly useful when the features are too complex to be designed.
oreover, our model is implemented based on graph theory and
as the flexibility to capture the local and global graph topological
ttributes. Finally, our method builds associations among popula-
ions and parcellations across the whole brain without the burden
f feature selection.
97
4.2. Evaluation of model interpretability

The ability of deep learning methods to model nonlinear rep-
resentations is vital but can make interpretation challenging (Yan
et al., 2022). Apart from other deep learning methods, our pro-
posed MDCN incorporating p-GradCAM is a CWAS-guided frame-
work that is capable of performing its interpretability for both
individual and group differences.

4.2.1. Individual maps derived from p-GradCAM
Fig. 3 visualizes the gradient and class activation maps on

two datasets, where three participants of each subgroup were
randomly sampled for comparison. The p-GradCAM maps were
aligned to the anatomical space using the derived values. The
results of the two datasets are displayed from top (ABIDE) to
bottom (ADHD-200), where red shows the amplitude of the map
values; for example, dark red indicates that the regions tend to
contribute to the functional connectome and are more corre-
lated. The maps of healthy participants are shown with relatively
consistent spatial distributions, whereas those of patients with
ASD/ADHD are considered distinctive. This conforms to the het-
erogeneity of psychological diseases in the clinic, which results
in inconsistent disorganization in functional changes. As shown
in Fig. 3A, compared with patients with ASD, healthy partici-
pants tended to achieve higher values in the medial and dorsal
prefrontal cortex regions. This indicates that functional changes
may exist in these patients. The same phenomenon also occurs in
the ADHD-200 dataset, as shown in Fig. 3B, where patients with
ADHD show lower amplitudes in the prefrontal cortex. Moreover,
we can observe that the regions located in the hippocampus of HC
and the patients are considered distinctive, where the amplitudes
of regions of the medial and dorsal prefrontal cortex in the HC are
much higher than those in ASD and ADHD.

4.2.2. Group analysis
Notably, the regions of interest of HC are attentively located

compared to those of patients. The class activation score is a
relative score; thus, a region of high interest for HC might show
a decrease in that of the patients. An independent t-test was
performed for the group statistical evaluation. Bonferroni cor-
rection was applied to control the false-positive rate. A p-value
< 0.05 after correction was determined significance within the
experiments.

Fig. 4 summarizes the spatial distribution of the located pat-
terns with significant differences (adjusted p-value < 0.05). For
the ABIDE dataset, four brain seed regions were located. These
regions belong to three functional subnetworks: default mode,
limbic, and control networks. For the ADHD-200 dataset, the
default mode network was found to be significantly different.
Statistical results showed that brain connectivity patterns within
these key regions were significantly decreased compared to those
of healthy participants. The detailed results are presented in
Table 3. The medial and dorsal prefrontal cortex was found with
significant differences in both datasets.
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Table 3
Brain regions with significant differences on ABIDE and ADHD-200 datasets.

Brain regions T-Statistic value p-value Adjusted p-value

ABIDE

LH_Vis_1 3.978 <0.001 0.007
LH_SalVentAttn_Med_2 −3.770 <0.001 0.017
LH_Default_PFC_3 −3.964 <0.001 0.008
RH_Default_PFCdPFCm_3 −3.602 <0.001 0.033

ADHD-200 RH_Default_PFCdPFCm_2 −3.668 <0.001 0.027

Vis: The Visual Network; SalVentAtten: The Salience and Ventral Attention Network; Default: The Default Mode Network; Med:
Medial; PFC: prefrontal cortex; PFCdPFCm: dorsal and medial prefrontal cortex; LH: the left hand; RH: the right hand.
Fig. 3. Examples on p-GradCAM maps for three individuals of HC group and the patient group with ASD/ADHD respectively. A threshold of 0.3 is used for better
visualization over all the maps. Three maps from axial, coronal panels are displayed from left to right respectively.
98
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Fig. 4. The located significant patterns on ABIDE and ADHD-200 datasets are shown from top to bottom (adjusted p-value < 0.05). The surface plots (left) demonstrate
he scratch of spatial distributed changes with significant difference. The details are further displayed in slices from axial, coronal, and sagittal panels (right). Significant
ifferences were found in the medial and dorsal prefrontal cortex in both ABIDE and ADHD-200 datasets.
Table 4
Regions with significant differences of Schaefer-100, Schaefer-200, and Schaefer-400 atlases. Only regions with significant differences
(adjusted p-value <0.05) are listed.

Brain regions T-statistic value p-value Adjusted p-value

Schaefer-100

LH_Vis_1 3.977 <0.001 0.007
LH_SalVentAttn_Med_2 −3.770 <0.001 0.017
LH_Default_PFC_3 −3.963 <0.001 0.008
RH_Default_PFCdPFCm_3 −3.601 <0.001 0.033

Schaefer-200 RH_Default_PFCdPFCm_7 −3.736 <0.001 0.039
Schaefer-400 RH_Default_PFCdPFCm_9 −3.890 <0.001 0.043

Vis: The Visual Network; SalVentAtten: The Salience and Ventral Attention Network; Default: The Default Mode Network; Med:
Medial; PFC: prefrontal cortex; PFCdPFCm: dorsal and medial prefrontal cortex; LH: the left hand; RH: the right hand.
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.2.3. Comparison of MDCN findings with MDMR
One remarkable feature of our proposed MDCN is that it lever-

ges the population distance matrix to measure inter- and intra-
roup similarities, which are also shared by MDMR. Accordingly,
e compared the key biomarkers detected by MDCN and MDMR
pproaches. Similarly, Bonferroni correction was applied to con-
rol for the false-positive rate. After correction, a p-value < 0.05
fter correction was determined significant.
As shown in Fig. 5, we detected overlapping regions in both

iseases, especially in the dorsal and medial prefrontal cortex.
n both datasets, the MDMR method locates regions mainly on
he default mode network including regions in the temporal
ortex, the prefrontal cortex, and the posterior cingulate cortex
n the ABIDE dataset, and the prefrontal cortex in the ADHD-
00 dataset. Specifically, the overlap on the dorsal and medial
refrontal cortex was located using both methods (MDMR p-
alue: <0.001; MDCN p-value: 0.033 in the region of RH_Default_
FCdPFCm_3). Similarly, an overlapping region was also detected
n the ADHD-200 dataset, where the dorsal and medial prefrontal
ortex was found (MDMR p-value: <0.001; MDCN p-value: 0.038
99
n the region of RH_Default_PFCdPFCm_2). These common find-
ngs demonstrate the feasibility of our proposed MDCN, which
s implemented based on deep learning, while simultaneously
inpointing the key brain connectivity signature for ASD and
DHD.

.3. Sensitivity analysis

To examine the effect of the atlas, we parcellated the brain at
ifferent spatial resolutions, including 100, 200, and 400 parcels
ased on the Schaefer atlas (i.e., Schaefer-100, Schaefer-200, and
chaefer-400). The experiments were repeated at each atlas for
omparison. As the scale of regions decreased, only one region
ith a significant difference among the three atlases was found,
here the connectivity in the dorsal and medial prefrontal cortex
f ASD patients decreased compared to that of HCs, as demon-
trated in Table 4. The findings in the dorsal and medial prefrontal
ortex are consistent with that in Schaefer-100 (the right dor-
al and medial PFC in Schaefer-100: adjusted p = 0.033; in
chaefer-200: adjusted p = 0.039; Schaefer-400: adjusted p =
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Fig. 5. Comparison of MDCN and MDMR for the connectivity analysis, where the evaluations on ABIDE and ADHD-200 datasets are displayed from top to bottom.
The statistical maps (adjusted p-value <0.05) returned from the MDMR are shown in yellow, those from the MDCN are shown in blue, and the overlaps between
he two are shown in red. The overlap on the dorsal and medial prefrontal cortex was located by MDCN and MDMR.
.042). To summarize, we ascertained the spatial distribution in
ig. 6A. Although the specific regions of different atlases show
light spatial fluctuations, the consistent results in the dorsal and
edial prefrontal cortex could indicate the power of the inter-
retability of our framework. In addition, as shown in Fig. 6B, the
ighest classification accuracy was achieved with the Schaefer-
00 atlas, whereas the AUC was the best with the Schaefer-100
tlas, indicating that the generalization ability of the model using
chaefer-100 is the highest.
In addition, we examined the effect of distance measurements,

ncluding the Euclidean, Chebyshev, and cosine similarity dis-
ances. Fig. 6 (C) visualizes the statistical maps across various
istance measures and the detailed values are listed in Table 5.
onsistent results were found in the medial and dorsal prefrontal
ortex (RH_Default_PFCdPFCm_3). In addition, a significant dif-
erence in the correlation and Chebyshev distance was found in
he left prefrontal cortex (adjusted p-value with correlation dis-
ance: 0.033; with Chebyshev distance: 0.036). Moreover, Fig. 6D
isplays the classification effect across distance measures, where
he best model was achieved by the correlation metric with the
ighest AUC (73.91%) and comparable accuracy (72.41%). Never-
heless, the faint fluctuations across atlases and distance metrics
ndicate that our MDCN is considered slightly robust and sensitive
o the atlas and distance metrics.

. Discussion

In this study, we propose a unified connectome-wide deep
earning framework, MDCN, to interpret the associations between
rain network reorganization and clinical phenotypes. MDCN can
fficiently map individual brain network signatures by high-order
onlinear message passing among both populations and parcella-
ions and further leverage this signature for disease identification
n an end-to-end manner. Our results demonstrated that MDCN
chieved the best performance in distinguishing ASD and ADHD
rom healthy controls based on resting-state fMRI data among
ther state-of-the-art CWAS-based approaches and deep learning
etworks. In particular, MDCN allows visualization of the disease-
elated connectome patterns on each individual by the highly
100
overlapping regions observed between MDCN and MDMR on
the two large datasets. The substantial correspondence and out-
standing classification performance demonstrate the advantage of
our unified connectome-wide learning framework over the two
traditional constituent steps (i.e., connectome mapping and task
learning).

5.1. The advantages of MDCN for brain connectome study

The proposed MDCN includes (1) graph convolution layers for
population association studies, (2) PAM and PCM layers for par-
cellation association studies and (3) an interpretability module,
p-GradCAM. This leads to several advantages for the MDCN.

Graph convolutions that act as low-pass filtering (Nt & Mae-
hara, 2019) benefits from leveraging higher-order association
information that could arise from population clusters with high
similarity. Modeling the population associations in graphs maxi-
mizes the discrepancies of brain network features in heterogene-
ity as well as relating dependencies among neighbors. Moreover,
the population graph was built based on features within each
parcellation and repeated across the whole brain. The derived
multiple graphs contribute to hyper-edges among individuals,
which improves the connectivity representations compared to
those of the homogeneous relations in a single graph. Compared
with most existing graph methods that build linear relations in a
graph, our method benefits from learning nonlinear associations
between participants using the hyper-edges. Nevertheless, MDCN
is feasible for embedding each region separately in population
graphs. In this way, the regional disease-specific structural in-
formation contained in the brain connectome can be utilized.
Finally, the PAM and PCM layers benefit from parcellation at-
tention learning and are feasible for modeling region-specific
connectome representations. Our proposed MDCN showed su-
perior prediction accuracy and improves the accuracy by 2.41%,
given that an accuracy of 70% might be an intrinsic limitation of
the ABIDE dataset (Parisot et al., 2018b). Notably, our proposed
MDCN benefits from a powerful graph learning architecture in-
stead of conventional machine learning or statistical models. For
comparison, we implemented the support vector machine with
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Table 5
Regions of various distance measures with significant differences (adjusted p-value <0.05) are listed.

Brain regions T-Statistic value p-value Adjusted p-value

Correlation

LH_Vis_1 3.977 <0.001 0.007
LH_SalVentAttn_Med_2 −3.770 <0.001 0.017

LH_Default_PFC_3 −3.963 <0.001 0.008
RH_Default_PFCdPFCm_3 −3.601 <0.001 0.033

Euclidean LH_Default_PFC_7 −3.684 <0.001 0.024
RH_Default_PFCdPFCm_3 −3.864 <0.001 0.012

Cosine RH_Default_PFCdPFCm_3 −4.084 <0.001 0.005

Chebyshev

LH_Default_PFC_3 −3.946 <0.001 0.008
RH_Vis_7 −5.045 <0.001 <0.001
RH_SomMot_4 4.713 <0.001 <0.001
RH_Default_PFCdPFCm_3 −3.580 <0.001 0.036

Vis: The Visual Network; SalVentAtten: The Salience and Ventral Attention Network; Default: The Default Mode Network; SomMot:
The Somatomotor Network; Med: Medial; PFC: prefrontal cortex; PFCdPFCm: dorsal and medial prefrontal cortex; LH: the left hand;
RH: the right hand.
Fig. 6. Visualizations of located brain regional features and classification comparisons across multiple atlases and distance metrics. (A) The statistical maps across
different atlases, where the sagittal views of Schaefer-100, Schaefer-200, and Schaefer-400 are displayed from top to bottom respectively. (C) The statistical maps
across different distance metrics include the correlation, Euclidean distance, cosine similarity distance, and Chebyshev distance. The regions with significant differences
are shown in red. The corresponding classification results are displayed in (B) and (D) respectively, where the classification accuracy (ACC) is shown in red and the
area under the curve (AUC) in green.
statistical CWAS methods (NBS and MDMR) for feature engineer-
ing. These methods are fed with selected features filtered by
statistical analysis across the whole brain but perform poorly
in classification (MDMR-67.43% VS MDCN-72.41% for ASD; NBS-
58.73% VS MDCN-67.45% for ADHD). This result suggests that
graph learning is more efficient in capturing and embedding
meaningful representative connectome features.

Although deep learning models are commonly criticized for
black-box problems, several recent approaches have been pro-
posed to improve their explanatory ability. Interpretable local
surrogates (e.g. LIME Ribeiro, Singh, & Guestrin, 2016) were found
to provide reliable explanations but were limited in local fidelity,
where the explanations must be locally faithful to be meaningful
(Katarya, Sharma, Soni, & Rath, 2022). Gradient-based methods,
e.g. CAM (Zhou, Khosla, Lapedriza, Oliva, & Torralba, 2016) and
GradCAM (Selvaraju et al., 2017), are most frequently used to
101
derive interpretable visualization for disease identification. Our
proposed p-GradCAM further takes advantage of the gradients
of the parcellation-wise attention module instead of a global
average pooling operation, which explicitly relates to important
representations. Our framework is able to predict diseases and
gives importance to different regions in an end-to-end manner,
without using any surrogate models or ad-hoc mechanism. The
model attributes the input features and makes decisions by the
system without perturbation, which is easily implemented for
clinical applications.

5.2. Investigation of findings

In our interpretability analysis, we detected disease-specific
brain functional network disturbances mainly occurring in the
left visual network, the left salience/ventral attention network
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nd the bilateral default mode network for ASD, whereas the
ight default mode network was the most vulnerable region for
DHD. Consistently, brain connectivity disruption in the visual
nd salience/ventral attention networks has also been reported
n previous ASD studies (Lombardo et al., 2019; Marshall et al.,
020). Functional hypoconnectivity in the visual network has
een found to be a key biomarker of ASD and may be criti-
al for social communication development. Abnormalities in the
ttentional networks are known to be related to poor exec-
tive control (Keehn, Müller, & Townsend, 2013; Tang et al.,
020). The MDCN illustrated that the default mode network, com-
rising the prefrontal cortex, is associated with task-irrelevant
ental processes, and is another remarkable brain regions that
xhibits network reorganization in both ASD and ADHD (Hariku-
ar, Evans, Dougherty, Carpenter, & Michael, 2021). Previous
tudies have indicated that the dorsal and medial prefrontal cor-
ex may contribute to the development of the tendency to initiate
oint attention, which is a critical milestone in early development
nd social learning (Bakeman & Adamson, 1984; Baldwin, 1995;
undy, 2003). Social processing studies have found evidences
f hypoactivation in the nodes of the ‘‘social brain’’, including
he prefrontal cortex (Bush, 2011; Cubillo, Halari, Giampietro,
aylor, & Rubia, 2011; Dichter, 2022; Paloyelis, Mehta, Kuntsi, &
sherson, 2007). Since the prefrontal cortex has been implicated
n social tasks (Schulte-Rüther et al., 2011), a disturbance in these
etworks may contribute to the atypical development of joint
ttention, social cognition and behavioral abnormalities (Cheng,
iu, Shi, & Yan, 2017; Mundy, 2003). Taken together, our findings
ouple with previous studies highlight the necessity of studying
ypoconnectivity within the default mode network for both ASD
nd ADHD. (Anderson et al., 2014; Gilbert, Bird, Brindley, Frith, &
urgess, 2008; Hale et al., 2014; Minshew & Keller, 2010; Philip
t al., 2012).
Interestingly, the dorsal and medial prefrontal cortex has been

epeatedly detected in both ASD and ADHD (see Table 3: the
ight PFCdPFCm_3 with the adjusted p-value = 0.033 in ABIDE;
he right PFCdPFCm_2 with the adjusted p-value = 0.027 in
DHD-200). This finding may be attributed to the similar symp-
omatology in children with ASD and ADHD, indicating that the
wo conditions might fall on the same continuum and are likely
o share many elements of possible factors (Grzadzinski et al.,
011; Kern, Geier, Sykes, Geier, & Deth, 2015). A previous study
Yerys et al., 2019) found that reduced functional connectivity
n the fronto-parietal and attention networks is linked to ADHD
ymptoms in ASD patients. Nevertheless, others have stated that
unctional abnormalities in the fronto striatal system (includ-
ng the prefrontal cortex) are involved in both ASD and ADHD
Rommelse, Geurts, Franke, Buitelaar, & Hartman, 2011). Both
unctional and structural studies have shown abnormalities in
his system in ASD and ADHD, as the system is responsible for
daptive responses (Durston, de Zeeuw, & Staal, 2009; Takarae,
inshew, Luna, & Sweeney, 2007). Our finding of consistent
hanges in the prefrontal cortex coincides with these studies and
rovides novel evidence for examining and comparing the neural
ignatures of both conditions.

.3. Limitations and future work

This study has some limitations. The proposed interpretation
odule p-GradCAM, depends on the classification score returned

rom the neural network, which is not well suited to regression
asks. Nevertheless, extension to regression tasks (e.g., exam-
ning brain connectome-IQ relationship) is feasible if the re-
ression values are obtained by transforming the classification
ogits with densely distributed regression values. Second, in this
tudy, although we only evaluated the functional connectome,
102
the proposed MDCN has practical application prospects for other
connectome studies. Our previous studies have shown the po-
tential use of MDMR in studying both functional and structural
connectomes (Yang et al., 2021; Ye et al., 2019) in Alzheimer’s
disease and Parkinson’s disease, while this can also be done by
MDCN. In future works, we plan to evaluate the framework for
discovering more types of connectivity-disease relationships and
demonstrate its extensibility. Finally, compared to that of other
deep learning methods, such as BrainNetCNN and BrainGNN, our
proposed method is somewhat computationally expensive, where
a two-stage training strategy is applied, and the graph training
is repeated for each parcellation. However, we suggest that this
is meaningful and acceptable because the current deep learning
models for connectome studies are remain small. The trends of
the increasing number of aggregated data and increasing model
parameters are triggered in multiple areas, which might provide
insights into brain connectome studies.

6. Conclusion

Exploring the complex associations between the brain con-
nectome and clinical phenotypes is a challenging task in neuro-
science. In this study, we propose a unified connectome-based
deep learning framework and demonstrate its feasibility and gen-
eralization ability using two large datasets. Our approach not only
outperforms other state-of-the-art methods of disease identifica-
tion but also provides interpretable feature mapping individually
for clinical guidance. The network reorganization detected by
MDCN, primarily located in the dorsal and medial prefrontal
cortex, is shared by both ASD and ADHD. Owing to the advantages
of MDCN, we believe it is important to systematically integrate
connectome mapping and graph learning to achieve better inter-
pretable and accurate disease identification, and it is desirable to
extend this framework in that direction in the future.
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