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ABSTRACT

Recent advancements in fMRI-based brain disorder diagno-
sis have shown that graph neural networks (GNNs) have been
state-of-the-art methods for brain network analysis. Among
them, transductive and inductive learning can be exploited by
GNN. Transductive graphs, such as population graphs, take
each subject as a node and use the node classification task for
diagnosis. This line of work suffers from high computational
costs and poor scalability to unseen data. Inductive methods,
on the other hand, only consider labeled data and may suffer
from overfitting and poor generalization when training with
insufficient samples. To address these limitations, we propose
a unified transductive-inductive network to study the proper-
ties of both transductive and inductive learning frameworks.
Our approach is implemented in a self-knowledge distilla-
tion architecture, where transductive predictions are distilled
from a transductive population graph network into an induc-
tive network as a self-supervised regularization term. To pre-
serve the topological properties within transductive graphs,
i.e., inter-node similarity, we propose a topology-regularized
self-knowledge distillation (Topo-KD) approach to regular-
ize the student model’s learning. Evaluations on the ADNI
dataset demonstrate the superiority of the approach in perfor-
mance and scalability.

Index Terms— Graph neural network, Neuroimage,
Transductive learning, Inductive learning

1. INTRODUCTION

In recent years, the functional connectome of the brain, de-
rived from functional MRI, has become an essential foun-
dation for brain disorder diagnosis [1, 2]. The connectome
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paradigm has shifted the connectome-wide association stud-
ies (CWAS) from multi-variant analysis [3, 4] to deep learn-
ing. In contrast to convolutional neural networks (CNNs),
graph neural networks (GNN5s) can capture the inter-node de-
pendencies and their interactions. GNNs have become pow-
erful tools for brain networks and could lead to significant
advances in brain disorder diagnosis and treatment [5, 6].

One type of GNN architecture is to represent a population
of participants as a single graph, where participants are inter-
connected based on connectome and phenotypic similarities
[7, 8]. These approaches utilize the transductive framework
and can leverage features and inter-node similarities to pre-
dict the test set via node classification. Such approaches are
particularly useful and natural when only a small amount of
supervised data is available [9]. However, they are compu-
tationally expensive and not scalable to new data. Another
GNN architecture involves tackling each brain as a graph,
with each brain region represented as a node, e.g. BrainGNN
[10]. These methods utilize the inductive framework, which
is more suitable for applications with large-scale data because
they can efficiently and effectively deal with new data [11].
However, most inductive learning models only consider la-
beled data and suffer from over-fitting and poor generaliz-
ability when training with insufficient training samples, es-
pecially for hard-to-collect brain connectome data [9].

In this study, we propose a unified transductive-inductive
architecture that utilizes the advantages of transductive pop-
ulation graphs and inductive frameworks. Our approach
is a self-supervised learning network that utilizes the self-
knowledge distillation mechanism to distill a transductive
graph neural network (teacher) to an inductive network (stu-
dent). This transforms computationally expensive transduc-
tive learning into inductive learning, allowing us to use train-
ing patterns as the source of transduction and to inference
in an inductive way. Specifically, we deploy the population
graph as the transductive teacher model and the Multi-Layer
Perceptron (MLP) as the student inductive network. MLP is
a simple network that is easy to implement and can reduce
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Fig. 1. Illustration of the population graph construction in (A), and the self-teacher architecture in (B)-training phase and (C)-

inference phase.

computational costs by avoiding information aggregation
from adjacent nodes. To preserve inter-subject associations
from the population graph, we propose to regularize the stu-
dent model training with topological structural knowledge of
the teacher graph model. For evaluation, we implemented
the ADNI dataset with 207 subjects with fMRI scans. Our
contributions are detailed as follows:

* We propose a transductive-inductive network that lever-
ages the advantages of both frameworks through self-
knowledge distillation.

* We introduce the topology-regularized self-knowledge
distillation (Topo-KD) method, which enables the
transfer of inter-subject association knowledge.

* Evaluated experiments demonstrate that an inductive
MLP network trained with Topo-KD could outperform
a computationally expensive transductive GNN.

2. METHOD

The architecture consists of two parts: a transductive teacher
network and an inductive student network. The teacher net-
work is implemented using the population graph neural net-
work, while the student classifier network is built using MLP.
The training process is illustrated in Fig.1 (B), where self-
knowledge distillation is employed to transfer graph refined
features and topological knowledge to the student MLP net-
work. During the inference phase, only the student MLP net-
work is used for prediction, as shown in Fig.1 (C).

2.1. Population Graph and Graph Convolution

The population graph is constructed by representing each
participant as a node. The feature and phenotypic similar-
ity between participants are denoted as the edge weight, by
reference to previous works [7] as: ey, = corr(Zy, o) -
Zthl ~v(Mp(v), Mp(u)), where H denotes a set of non-
imaging phenotypic measures including sex, age, and site
ID. The connectome similarity corr is obtained by measur-
ing the filtered features & by Recursive Feature Elimination
as: corr(Zy, &y) = emp(—W) with a correla-
tion distance p and a width of the kernel o. -~ is defined
depending on the type of phenotypic value with a threshold
0: y(Mp(u), My (v)) = 1if |[Mp(u) — My (v)| < 6, else 0.

3-order Chebyshev spectral graph convolution is imple-
mented to perform message passing among nodes as goxgT =
UgoUTx, where U is the Fourier basis and xg denotes a
graph convolution operation on graph G. And gg(A) is ob-
tained by go(A) = Zz:1 0, T3 (A), where A = ﬁA — Iy
with the identity matrix Iy, and maximum eigenvalues A, -
A € RN*N s the diagonal matrix.

2.2. Topology-Regularized Self-Knowledge Distillation

Self-knowledge Distillation. Self-knowledge distillation re-
inforces the student network to learn from a weighted combi-
nation of the ground truth and the output distribution from the
teacher with a weight \: L = Lo + ALk p, where Ly p de-
notes the Kullback-Leibler (KL) divergence, which is used to
measure the distribution similarity between the teacher output
pT and the student output p° as Lxp = KL(pT||p®). Lor
is obtained by cross-entropy loss.

Feature Refinement. The intermediate representations
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are predictive of the teacher network and are leveraged to re-
duce the gap between the teacher and student features. Con-
sidering that the latent features are in high dimensionality
and there might exist heterogeneous relationships, we pro-
pose to introduce an auxiliary network to generate refined
latent features. The auxiliary structure is denoted as ¢ and
implemented with a 3-layer fully connected layer followed
by ReLU activation and batch normalization layers. The ob-
jective function of the feature refinement is formulated as:
Lyefine = ||¢(h7) — hT||?. Due to the inconsistent sam-
ple size in transductive and inductive learning, all the training
features and predictions are gathered and then distilled.

Topological Regularization. The population graph has
benefited from predicting the nodes from features and their
adjacent nodes with the links. Conventional self-knowledge
distillation facilitates transferring knowledge from features
but it fails to preserve the graph’s topological structure, i.e.,
inter-node associations. In this regard, we regularize the
student model training with the inter-node similarity with a
weight v, ,,, which is obtained as:

N
Ltopo = Z Z Z/Ju,v : KL(prpS)a
u=1veN (u)\u 1)
€u,v
wu,v =%

€mazx — Emin

The connection weight 1, ,, is obtained by normalizing the
connection e, ,. 7y is to rescale the weight and is set as 1 for
default. By this line, the prediction of sample u is attentively
regularized by the transductive prediction of sample v with a
weight 9, ,,. For instance, a large edge weight e, ,, indicates
that the nodes are similar, and the v,, ,, approaches 1.

Optimization. In the training process, the objective func-
tion is constructed by a weighted combination of the target
loss LgT, knowledge distillation loss L k p, intermediate fea-
ture refinement 10ss L. f;ne and the topology regularization
loss Lyopo0, as displayed in Fig. 2. Moreover, to mitigate the
cold start in the student model, we gradually balance the regu-
larization terms with the weight oy = ap X L+ where T is the
total epoch for training, o is set as 1.0. Finally, we obtain
the loss function:

L= LGT + /\ILKD + A2Lrefine + )\3Ltopo (2)

3. EXPERIMENTS

3.1. Datasets and Image Processing

ADNI Dataset': The ADNI dataset is a longitudinal multi-
modal neuroimaging dataset and is leveraged to predict MCI
from AD. Notably, MCI is considered to be a significant stage

"http://www.adni-info.org/
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Fig. 2. Illustration of the network optimization. The solid line
indicates the passing of the center node u, and the dotted line
represents the passing of adjacent nodes, e.g. v.

for the preclinical diagnosis of AD. In this study, we col-
lected 207 subjects for evaluation, comprising 103 partici-
pants with mild cognitive impairment (MCI) and 104 patients
with Alzheimer’s disease (AD). Only scans taken at baseline
were included in the study.

All data underwent preprocessing with the Configurable
Pipeline for the Analysis of Connectomes (CPAC) [12]. This
included slice timing correction, motion realignment, inten-
sity normalization, regression of nuisance signals, band-pass
filtering (0.01-0.08 Hz), and registration into the standard
space (MNI152). The regression of nuisance variables was
modeled using 24 motion parameters.

3.2. Implementation details

In the implementation, the MLP network is a 3-layer multi-
layer perception classifier followed by a leaky ReLU activa-
tion. The number of selected features is 1000. A; and Ay
were set as 1, and A3 was set as 0.01. We set the learning
rate to 3e-4, and the models were trained for 400 epochs. We
employed 10-fold cross-validation, randomly selecting 10%
of samples for testing in each fold. The model’s performance
was assessed by accuracy (Acc), sensitivity (Sen), specificity
(Spe), and area under the curve (AUC).

3.3. Competitive methods

In this study, these models are implemented and compared as
baselines: (1) SVM and MLP. The support vector machine
(SVM) and multi-layer perception (MLP) are implemented
as baseline methods for classification. The upper matrix of
the brain networks is fed into the classifiers for prediction.
(2) BrainNetCNN [13] and BrainGNN [10]. BrainNetCNN
and BrainGNN are two powerful approaches for brain net-
work analysis. These two models are applied as inductive
learning baselines for comparison. (3) Hyper-GNN [14] and
DHGNN [15]. Hyper-GNN encodes the connectome into hy-
peredges, while DHGNN extends the Hyper-GNN into a dy-
namic graph. These models were implemented by reference
to the originally proposed architecture. (4) Population-GCN
[71, TE-HI-GCN [16]. These models were implemented us-
ing population graphs and compared as transductive learning
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methods. Sex, age, and site are used to construct the graph.

4. RESULTS AND DISCUSSION

Classification Results. Table 1 displays the 10-fold cross-
validation classification results of our proposed method and
other competitive approaches, with the best results shown
in bold. Compared with SVM and MLP, deep learning ap-
proaches that leverage graph structural information for clas-
sification showed improved performance. These methods can
be divided into two categories: transductive learning (e.g.
Population-GCN, TE-HI-GCN) and inductive learning (e.g.
BrainNetCNN, and BrainGNN). In the ADNI dataset, trans-
ductive learning methods outperformed inductive learning
methods in most cases. For example, Population-GCN and
TE-HI-GCN achieved better accuracy (80.3% and 81.5%)
compared to BrainNetCNN, BrainGNN, and Hyper-GNN
(79.0%, 80.1%, and 78.1%). This indicates that graph neu-
ral networks with transductive learning perform better when
dealing with a relatively small dataset by capturing associa-
tions among labeled and unlabeled data.

Compared to other methods, our proposed network
demonstrated better performance, achieving an accuracy of
82.2%, sensitivity of 87.8%, specificity of 90.7%, and an
AUC of 83.0%. We suspect that, on one hand, most existing
methods suffer from over-fitting and poor generalizability.
The improvements can be ascribed to the improved gener-
alization performance raised by the knowledge distillation
paradigm. On the other hand, our approach employs topol-
ogy regularization and self-knowledge distillation, which
penalizes the student prediction with topological informa-
tion, refined features, and soft targets. This regularization
paradigm has been shown to improve performance [17].

Table 1. The classification performance on the ADNI dataset
across 10-folds. The best results are shown in bold.

Method Acc Sen Spe AUC
SVM 60.3£14.6 65.0+104 583+12.8 61.6+16.0
MLP 7744122  74.14+17.8 80.5£17.5 82.3%+10.6
BrainNetCNN [13] 79.0£8.2 73.6£8.0  83.3%11.1 82.8+9.8
BrainGNN [10] 80.1+9.5 79.24£9.2  82.3+148 81.8%+11.5
Hyper-Graph [14] 78.1£7.5 7377£9.6  84.3+158  81.7+£84
DHGNN [15] 81.4+7.8 84.8+119 86.4+12.1 81.5+6.4
Population-GCN [7] | 80.3+11.5 8534+11.3 83.1£163 81.94+13.7
TE-HI-GCN [16] 81.5+8.6 81.8+8.6 84.61+9.8 82.5+7.3
Ours 822449 87.8482 90.71+10.2 83.016.7

Table 2. Ablation studies on the effect of the feature refine-
ment and the topology regularization on ADNI dataset.

Model Components ADNI
Lref’ine Ltopo Acc AUC
Teacher (GCN) 80.3+11.5 81.9+13.7
Student (MLP) 79.1£8.1 78.5+£8.4
Student (MLP) 79.9+7.5 79.249.7
Student (MLP) v 80.5+6.1 81.6+7.8
Student (MLP) v 82.2+4.9 84.0+6.7
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Fig. 3. Illustration of the parameters and FLOPS.

Ablation Studies. We conducted ablation studies to as-
sess the impact of feature refinement and topology regular-
ization on our model. Table 2 presents the results including
the averaged accuracy and AUC across folds. We observed
that the distilled MLP (second row) performed worse than the
teacher population-GCN model (first row). However, with
feature refinement and topology regularization, the perfor-
mance on the ABIDE dataset surpassed that of the teacher
model. This is consistent with previous studies that suggest
the student model can outperform the teacher model [18].

We displayed the computational cost in Fig. 3, where the
X-axis represents the number of parameters and the Y-axis
represents floating point operations (FLOPS). The size of the
circles represents the accuracy performance with larger cir-
cles indicating better performance. The preferred methods
are those in the lower-left corner with low computation cost
and parameters. For comparison with transductive and induc-
tive frameworks, we accumulated all samples in each dataset
to obtain FLOPS. The results show that Population-GCN has
a relatively high number of parameters and FLOPS. Hyper-
GNN and BrainGNN are relatively small in size. In compari-
son, the MLP trained by Topo-KD achieved the best accuracy
with the lowest cost among all methods.

5. CONCLUSION

In this study, we propose a unified transductive-inductive
framework for brain disorder diagnosis and introduce the
Topo-KD approach to transfer topology-regularized knowl-
edge to an MLP network. Our approach studies the proper-
ties of both transductive and inductive learning frameworks
and transforms the transductive knowledge into an induc-
tive learning method for inference. Our experimental results
demonstrate the distilled inductive network enables gen-
eralization to new data and holds potential for large-scale
inference and brain disorder diagnosis.
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