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A B S T R A C T   

One of the core challenges of deep learning in medical image analysis is data insufficiency, especially for 3D 
brain imaging, which may lead to model over-fitting and poor generalization. Regularization strategies such as 
knowledge distillation are powerful tools to mitigate the issue by penalizing predictive distributions and 
introducing additional knowledge to reinforce the training process. In this paper, we revisit knowledge distil-
lation as a regularization paradigm by penalizing attentive output distributions and intermediate representa-
tions. In particular, we propose a Confidence Regularized Knowledge Distillation (CReg-KD) framework, which 
adaptively transfers knowledge for distillation in light of knowledge confidence. Two strategies are advocated to 
regularize the global and local dependencies between teacher and student knowledge. In detail, a gated distil-
lation mechanism is proposed to soften the transferred knowledge globally by utilizing the teacher loss as a 
confidence score. Moreover, the intermediate representations are attentively and locally refined with key se-
mantic context to mimic meaningful features. To demonstrate the superiority of our proposed framework, we 
evaluated the framework on two brain imaging analysis tasks (i.e. Alzheimer’s Disease classification and brain 
age estimation based on T1-weighted MRI) on the Alzheimer’s Disease Neuroimaging Initiative dataset including 
902 subjects and a cohort of 3655 subjects from 4 public datasets. Extensive experimental results show that 
CReg-KD achieves consistent improvements over the baseline teacher model and outperforms other state-of-the- 
art knowledge distillation approaches, manifesting that CReg-KD as a powerful medical image analysis tool in 
terms of both promising prediction performance and generalizability.   

1. Introduction 

Advanced artificial intelligence technologies such as deep learning 
have shifted the research paradigm of medical image analysis (Isensee 
et al., 2021; Litjens et al., 2017). Prominent achievements of prior works 
manifest that deep learning approaches have become state-of-the-art 
solutions to a variety of medical image analysis problems, such as 
lesion detection (Albarqouni et al., 2016; Bejnordi et al., 2017; Dou 
et al., 2016), image segmentation (Baumgartner et al., 2017, 2019; Dou 
et al., 2020a), and phenotype prediction (Nandakumar et al., 2022; 
Venkataraman et al., 2011; Yang et al., 2021). These successes could be 

ascribed to effective learning algorithms and well-annotated medical 
data (Maier et al., 2017; Mehta et al., 2022; Menze et al., 2014). 
Nevertheless, it is still difficult to collect large, diverse, and 
well-annotated training sets in many cases (Hesamian et al., 2019; 
Razzak et al., 2018; Wong et al., 2018), whereas learning with insuffi-
cient samples might decrease the model performance in practice. Thus, 
it presents great challenges for deep learning approaches in medical 
image analysis to avoid over-fitting and poor generalizations. 

Recently, a series of regularization strategies have been proposed to 
address this issue, such as label distribution learning (LDL) (Gao et al., 
2017; Liao et al., 2020; Wang et al., 2022), label smoothing 
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regularization (LSR) (Islam and Glocker, 2021; Müller et al., 2019) and 
multi-label learning (Mercan et al., 2017; Zhang and Zhou, 2013). These 
approaches soften the encoded targets to vectors of category distribution 
and penalize the output to improve generalization (Szegedy et al., 
2016). Such labeling paradigms provide more knowledge of label rele-
vance and can utilize dark knowledge, i.e. the knowledge of wrong 
predictions. However, it is still challenging to obtain good soft labels 
since they are difficult to be determined empirically and explicitly. A 
different approach to regularization is by knowledge distillation (KD) 
(Hinton et al., 2015), which was originally proposed to transfer 
knowledge from one model to another without a significant drop in 
performance. Apart from its usage on model compression, KD is feasible 
to penalize the predictive distributions and the intermediate represen-
tations with additional knowledge to improve generalization perfor-
mance, e.g. from a pre-trained teacher model (Dou et al., 2020a; 
Rahimpour et al., 2021; Yang et al., 2021). It is worth noting that the 
knowledge distillation paradigm has been proven to be an adaptive 
version of label smoothing regularization (Chandrasegaran et al., 2022; 
Müller et al., 2019; Yuan et al., 2020), which prevents overconfident 
predictions and reduces intra-class variations. This provides more in-
formation than the simple one-hot encoding of the class labels and 
contains hidden inter-class dependency knowledge. 

In particular, when the same network is used for both the teacher and 
student models, the paradigm is called self-knowledge distillation, 
which enables a model to learn knowledge from itself. In terms of this, 
self-knowledge distillation is known to be informative for the student 
network to regularize and refine its knowledge (Kim et al., 2021). 
Recently, this paradigm has been widely applied and has achieved 
promising improvements in various tasks in computer vision, such as 
image classification (Shen et al., 2022; Yun et al., 2020), semantic seg-
mentation (Dou et al., 2020b; Ye et al., 2022), and brain age estimation 
(Yang et al., 2021). Especially, (Yuan et al., 2020) first proposes a 
Teacher-free Knowledge Distillation (TFKD) framework to refine a 
model itself by replacing the dark knowledge with predictions from the 
model. Progressive self-knowledge distillation (PSKD) gradually utilizes 
its knowledge for softening targets by training with a linear combination 
of the hard targets and past predictions (Kim et al., 2021). Apart from 
transferring knowledge to penalize the softmax output layer, FitNet 
(Romero et al., 2015) proposes to learn an intermediate representation 
that is predictive of the representations of the teacher. Feature refine-
ment via self-knowledge distillation (FRSKD) further introduces an 
auxiliary self-teacher network to refine knowledge (Ji et al., 2021). Be 
your own teacher (BYOT) implements auxiliary classifiers to utilize the 
output of intermediate layers, where the knowledge in deeper networks 
is squeezed into shallow ones (Zhang et al., 2019). These approaches 
provide novel insights for enhancing the generalization performance 
and can be flexibly integrated into existing models. 

However, most existing approaches transfer the entire knowledge 
without considering the global and local dependencies between the 
teacher and student. Firstly, the teacher model would not always bring 
good knowledge. If the teacher model mistakenly produces a wrong 
prediction with high probability, the student model would learn from 
the ground truth as well as a wrong imitation distribution, where the 
performance and prediction confidence might be decreased. Moreover, 
most existing approaches potentially ignore the complementary infor-
mation between the teacher and the student representations. Reinforc-
ing the student training straightforwardly with intermediate 
representations might bring in noise, and even lead to over- 
regularization (Song et al., 2022; Zhang et al., 2020). Finally, it is 
difficult to sufficiently utilize the feature distillation, since the 
high-dimensional intermediate features can be hardly leveraged to 
generate meaningful knowledge (Ji et al., 2021). To overcome these 
limitations, we propose to attentively transfer knowledge by considering 
knowledge confidence, which is conducted through a gating mechanism 
and attentive feature refinement layers. 

In this regard, we revisit knowledge distillation as regularization 

paradigm for medical image analysis, especially high-dimensional 3D 
brain imaging with limited samples. This paper constitutes an extended 
version of our previous work (Yang et al., 2021), where we delve deeper 
into the investigation of global and local dependencies between teacher 
and student knowledge. To achieve this, we introduce the CReg-KD 
framework and provide a more comprehensive analysis through 
extended experiments and discussions. Building upon the Gated Distil-
lation (GD) mechanism proposed in our previous work, which focuses on 
the global weighting of transferred knowledge, we propose an additional 
component called the Attentive Feature Refinement layer (AFR). This 
layer enables the refinement of feature map transformation by incor-
porating attentive local semantic context. By combining these elements, 
CReg-KD guides the student model to learn from both global and local 
dependencies. Our evaluation expands to encompass AD classification 
and brain age distribution learning tasks using T1w images. Extensive 
experimental results demonstrate the superiority of our proposed 
CReg-KD in medical image analysis by consistently improving perfor-
mances over state-of-the-art methods and enhancing generalizability 
without increasing parameters for the student model. Our code is 
available at https://github.com/podismine/CReg-KD. The main contri-
butions of the proposed work are: 

• We introduce a novel self-supervised knowledge distillation frame-
work called CReg-KD, which serves as a regularization paradigm to 
enhance performance and generalizability.  

• Global and local dependencies are investigated to regularize the 
transfer of knowledge by the gating and attentive refinement layers.  

• Through extensive experiments on two tasks, we demonstrate the 
superiority of our method in improving performance and 
generalization. 

In this extended version, we introduce the following enhancements:  

• Characterizing the confidence of transferred knowledge based on 
global and local dependencies, resulting in the development of the 
CReg-KD framework. Specially, we propose the AFR layers to refine 
the feature map using attentive local semantic context.  

• A comparison of methods on an additional task: AD classification 
based on T1w images. We conduct extended evaluations, including 
ablation studies, model generalizability, and performance analysis 
with different sample sizes. We also provide a sensitivity analysis of 
various types of AFR.  

• An improved performance in brain age prediction and outperforming 
results for AD classification. Notably, even with a simple baseline 
like ResNet-18, our CReg-KD approach is able to achieve top- 
performing results. 

2. Methodology 

In this section, we first overview the knowledge distillation tech-
niques in Section 2.1 and then introduce the proposed gated mechanism 
for knowledge distillation in Section 2.2.1. Moreover, attentive feature 
refinement layers for attentive intermediate representations learning are 
investigated in Section 2.2.2. 

2.1. Preliminate of knowledge distillation 
Knowledge distillation was first proposed to transfer knowledge, 

usually from a larger deep neural network into a small network without 
a significant drop in performance. The main idea behind this is that the 
student model mimics the teacher model to obtain a competitive or even 
superior performance. In self-distillation, the teacher and student model 
come from the same neural network, and the student utilizes its 
knowledge to improve itself. 

Formally, we denote T and S as the teacher and student networks 
respectively. The teacher model is firstly pre-trained. And the student 
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model learns from a weighted combination of the ground truth and the 
output distribution of the teacher: 

L=αLgt + (1 − α)⋅LKL (1)  

LKL= KL(pT ‖ pS) (2)  

where KL denotes the Kullback-Leibler (KL) divergence, which is used to 
measure the distribution similarity between the teacher output pT and 
the student output pS. The objective function is combined with the target 
loss Lgt and the imitation loss LKL raised by the knowledge distillation 
with a hyperparameter α to balance two terms. Moreover, a relaxation 
temperature τ is usually introduced to soften the signal arising from the 
teacher output: 

pT(x; τ) = softmax
(

zT(x)
τ

)

(3)  

pS(x; τ) = softmax
(

zS(x)
τ

)

(4) 

Finally, the formulation for the student training with KD can be 
obtained as a regularization form by multiplying a square of the tem-
perature τ2 to stabilize the back‑prop gradient: 

L = αLgt + (1 − α)τ2⋅KL
(
pT(x; τ) ‖ pS(x; τ)

)
(5) 

Notably, the first term in Eq. (5) is the original loss between the 
student output and the ground truth, and the second term reinforces the 
student network to learn from the softened output of the teacher model. 
And thus self-distillation learning can be viewed as learning from the 
target and a regularization term. 

In particular, when it comes to the classification task, as an example, 
Eq. (5) is represented as: 

LKD = αLCE
(
pGT , p

)
+ (1 − α)τ2⋅KL

(
pT(x; τ) ‖ pS(x; τ)

)
(6) 

If we formulate the smoothed label distribution as 
q(x) = αpGT(x) + (1 − α)u(x) with u(x) as a uniform distribution, the 
label smoothing regularization can be formulated as: 

LLSR = αLCE
(
pGT , p

)
+ (1 − α)(KL(u(x) ‖ p(x)+H(u)) (7)  

, where H denotes the entropy. If we set the temperature τ = 1, then we 
obtain pS(x) = p(x). Eq. (6) can be viewed as a special case of Eq. (7) 
with a learned distribution from the teacher pT(x). In this regard, the 
knowledge distillation paradigm is a special case of LSR and can be 
utilized as a regularization paradigm. 

2.2. Confidence regularized knowledge distillation 
As stated above, the knowledge distillation paradigm provides a 

learned and adaptive label regularization to reinforce student training. 
Based on this mechanism, we take the dependencies between teacher 
and student knowledge into consideration. Fig. 1 demonstrates the 
structure of our proposed CReg-KD framework including gated distilla-
tion, output probability distillation, and attentive feature refinement. 
The gated distillation penalizes the transferred knowledge globally by 
weighting the teacher loss, while the attentive feature refinement layers 
provide locally enhanced features with key semantic contexts. 

2.2.1. Gated distillation 
Gating is a popular strategy for controlling information passing. Long 

short-term memory and gated recurrent unit are well-known 

Fig. 1. Overview of the proposed Confidence Regularized Knowledge Distillation (CReg-KD) framework, where the output probability and attentively refined feature 
maps are gated to transfer confidence-regularized knowledge. The details of Attentive Feature Refinement (AFR) layers are demonstrated in the upper right of the 
figure, where the convolution layers are built by two convolution operators with a kernel size of 3 and 1 respectively followed by a ReLU activation function. The 
objective loss is obtained by combining the task target loss Ltarget , output distillation loss LKD, and refined feature distillation loss LHT . 
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architectures that leverage gating memory for dealing with context- 
sensitive representations, and achieve impressive results on sequence 
modeling (Chung et al., 2014; Hochreiter and Schmidhuber, 1997; Pe-
ters et al., 2017). In this section, we introduce a novel gated distillation 
mechanism for filtering knowledge transferred. 

In the knowledge distillation paradigm, the student model learns 
from two aspects: the target and the knowledge of the teacher model. 
Considering that the teacher model does not always provide meaningful 
knowledge, it is problematic to guide the student model to learn from 
two inconsistent targets. In this regard, we regularize the student model 
to learn from the teacher model when the teacher provides confident 
information. In detail, we re-weighted the teacher prediction error as a 
confidence score to guide the student model for training. Intuitively, 
when the error is too large to supervise, the student would only learn 
from the ground truth by itself without learning from the teacher model. 
The Gated Distillation (GD) mechanism is obtained as: 

ψk = 1 − clip
(

dis
(
oT

k , oGT
k

)

η

)

(8)  

where ψk denotes the transferring weight of the k-th sample, η rescales 
the prediction error, and clip function restraints the weights to ψk ∈ (0,
1). oT

k and oGT
k denote the outputs of the teacher and the target respec-

tively. Function dis represents a distance function to measure the simi-
larity of the teacher output and the target. This function is decided in the 
experiments according to different task objectives. The setting of η and 
clip operation limits the prediction error with an upper bound. We 
consider that the teacher model could not give meaningful knowledge to 
the student model when the prediction is out of this range. Our imple-
mentation helps to mitigate the disturbance of the unconfident trans-
ferred knowledge and contributes to more stable training. With the 
gated distillation mechanism, we would obtain the objective function 
with ψ as: 

L = αLtarget + (1 − α)τ2⋅ψKL
(
pT(x; τ) ‖ pS(x; τ)

)
(9)  

2.2.2. Representation refinement with attentive semantic context 
Intermediate representations are predictive of the teacher network 

and allow for generalizing without utilizing soft targets (Romero et al., 
2015). Although the hint representations convey more meaningful 
knowledge compared to the soft targets, the high dimensionality of the 
intermediate feature maps might hinder the imitation of knowledge 
transfer, which decreases the performances. In this regard, it is prob-
lematic to simply transfer the entire high-dimensional hint representa-
tions for knowledge transfer. The gated distillation mechanism 
mentioned above allows for filtering sample-wise knowledge, however, 
is limited to hint representations. In this section, we introduce an 
auxiliary structure to generate refined hint representation by incorpo-
rating sample knowledge filtering and hint representation refinement 
for mimicking the generalization capability of the teacher. The idea 
behind this is inspired by previous studies that leverage auxiliary 
convolution blocks for multi-scale or cross-level feature alignment (Qi 
et al., 2021). We hypothesize that the auxiliary learning architecture 
could also refine and develop key hint representations for imitation. 

Apart from the soft target distillation, feature distillation induces the 
network to mimic the refined hint representations: 

LHT =
⃒
⃒
⃒
⃒ϕ
(

ĥ
S
l

)
,ϕ

(
hT

l

)⃒
⃒
⃒
⃒

2
, ĥ

S
l (x) = f

(
hS

l

)
(10)  

where the hint representations of the student are refined by the f 
operation, which is built by two convolution layers with a kernel size of 
[3, 1] respectively. L2 loss is implemented to minimize the discrepancy 
between the representations hl of the l-th layer. ϕ is a pooling function 
for aggregating spatial attention maps: ϕ : RC×H×W×D→RH×W×D. More 
specifically, we will consider the following spatial attention maps:   

• Averaged absolute values raised to the power: ϕpow− avg(x) =
∑C

i=1
|xi |

2

C .  

• The power of the averaged values: ϕavg− pow(x) =

(
∑C

i=1
xi
C

)2

.  

• The average of the values: ϕmean(x) =
∑C

i=1
xi
C.  

• The raw features: ϕraw(x) = x. 

Moreover, we extract the feature maps of M layers for distillation to 
minimize the discrepancy between teacher and student representations. 
In this study, feature maps of M = 4 layers are refined and averaged. 
Finally, by integrating the loss functions above, the objective function is 
formulated as: 

L = αLtarget + (1 − α)ψLKD + (1 − α)ψLHT

= αLtarget + (1 − α)τ2ψKL
(
pT ||pS)+ (1 − α)ψ

∑M

l=1

⃒
⃒
⃒
⃒ϕ
(

ĥ
S
l

)
,ϕ

(
hT

l

)⃒
⃒
⃒
⃒

2 (11) 

Moreover, to better balance the loss values of the three terms, we 
reformulate the loss function with the weights λ1 and λ2: 

L = Ltarget + λ1τ2ψKL
(
pT ||pS)+ λ2ψ

∑M

l=1

⃒
⃒
⃒
⃒ϕ
(

ĥ
S
l

)
,ϕ

(
hT

l

)⃒
⃒
⃒
⃒

2
(12)  

3. Experiments 

3.1. Materials 

In this study, to evaluate the robustness and effectiveness of the 
proposed method, we made comparisons on two tasks including the 
classification of Alzheimer’s disease (AD) and brain age prediction. The 
descriptive information is displayed in Table 1. 

AD classification. The AD classification task is carried out to 
distinguish AD from healthy participants. We leveraged the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database1 to form the cohort, 
including a total of 902 participants. Among them, 439 participants 
were diagnosed as AD at baseline and 463 participants were healthy at 
their first examination. These subjects are divided into two groups: AD 
and healthy control (HC) in accordance with the standard clinical 
criteria, such as Mini-Mental State Examination (MMSE) scores and 
Clinical Dementia Rating (CDR). The sex and age of the HC and AD 
group are matched. 

Brain age prediction. Previous studies demonstrated that MRIs 
could be used to predict chronological age and show that brain age is 
vital to help improve the detection of early-age neurodegeneration and 
predict age-related cognitive decline (Bashyam et al., 2020; Jónsson 
et al., 2019; Ran et al., 2022). Accurate brain age estimating is an 
essential prerequisite for quantifying the predicted age difference as a 

Table 1 
Demographic details on two tasks including gender, age, Mini-mental State 
Examination (MMSE), and Clinical Dementia Rating (CDR).  

Task Group 
type 

Gender  
(Male/ 
Female) 

Age 
(Mean 
±Std) 

MMSE 
(Mean 
±Std) 

CDR 
(Mean 
±Std) 

AD 
classification 

HC 258/205 73.93 
±6.82 

28.93 
±1.43 

0.00 
±0.00 

AD 240/199 75.03 
±7.87 

21.80 
±3.74 

0.77 
±0.27 

Brain age 
estimation 

HC 1569/ 
2086 

57.31 
±21.53 

– –  

1 http://adni.loni.usc.edu 
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biomarker. In this study, a total of 3655 T1-weighted MRI images from 
four public datasets including the IXI database,2 the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI), the Open Access Series of Imaging 
Studies (OASIS) (Marcus et al., 2010), and 1000 Functional Con-
nectomes Project3 (1000-FCP) are selected to form our cohort. Only 
healthy subjects were selected in our experiments, with no indication of 
neurological pathology, and no psychiatric diagnosis. The ADNI and 
OASIS datasets are public with longitude studies, where 1024 and 1028 
adult and elderly subjects with ages ranging from 42 to 92 are included. 
The 1000-FCP projects mainly cover the young with 1040 subjects with 
a mean age of 25, and the IXI dataset covers 563 subjects with a full 
range of ages. 

Preprocessing. All the images were acquired at 3T or 1.5T T1- 
weighted MRI. The images were processed including AC-PC aligns, 
brain skull stripping, bias field correction (Sled et al., 1998), and linear 
normalization into the standard MNI space. Additionally, z-score 
normalization is employed to narrow the gap between different data 
centers and is vital for successful deep learning-based MR image syn-
thesis (Reinhold et al., 2019). After preprocessing, all images are 
down-sampled trilinearly into the standard 2mm3 MNI space and 
padded into the size of 96× 112× 96. 

3.2. Competitive methods 

To test our proposed method, we compare it with several state-of- 
the-art knowledge distillation approaches. These methods include 
Teacher-free knowledge distillation (TFKD) (Yuan et al., 2020), Pro-
gressive self-knowledge distillation (PSKD) (Kim et al., 2021), FitNet 
(Romero et al., 2015), Feature Refinement via Self-Knowledge Distilla-
tion (FRSKD) (Ji et al., 2021) and Be your own teacher (BYOT) (Zhang 
et al., 2019), which are mentioned above. We follow the training 
strategy by reference to the original architecture and implement the 
temperature within a grid search of [0.5,0.9,1,3,5,10]. The parameter αT 
at the last epoch in PSKD is set as 0.8. For FitNet, the layer to transfer 
intermediate representations is searched and decided according to 
different architectures. The auxiliary architectures in BYOT and FRSKD 
are modified by 3D convolution groups. We evaluate the effect of 
knowledge distillation in penalizing the softmax output by comparison 
with TFKD and PSKD. FitNet, FRSKD, and BYOT are used to test the 
knowledge distillation by feature learning. 

3.3. Implementations 

Network architecture. For each task, four well-estimated neural 
network frameworks are implemented for measuring. (1) AD classifi-
cation. The ResNet with 18/50 layers (He et al., 2016), DenseNet121 
(Huang et al., 2018), and Inception-V3 (Szegedy et al., 2016) are 
generally purposed models for classification. These four models were 
used as the backbone for feature learning. For each network, the default 
2D operations were replaced by 3D, and a global average pool layer was 
applied to average the encoded features. Finally, a two-layer multi-
ple-layer perception was used for classification. The distance function 
dis in Eq. (8) for the AD classification is dis(oT

k ,o
GT
k ) =

⃒
⃒oT

k − oGT
k
⃒
⃒, where 

oT
k = pT

k , oGT
k = pGT

k . (2) Brain age prediction. We employed two 
well-estimated models including ResNet18, and ResNet50 and two 
models that are specially designed for brain age prediction: SFCN (Peng 
et al., 2021), and DeepBrainNet (Bashyam et al., 2020). To fit our 3D 
neuroimaging data, we utilized the standard architecture and replaced 
the 2D operations with 3D. And a global average pool was applied to 
average the features. These models encode the image data into 88 fea-
tures. A multiple-layer perception with three layers was utilized to 

classify the features into 22 probabilities followed by a softmax function. 
We leveraged the label distribution learning paradigm by converting the 
single age value into a normal distribution, which is a well-known 
strategy for age regression (Gao et al., 2017; Peng et al., 2021). The 
variance of the normal distribution was set as 2. The distance function is 

implemented as dis(oT
k ,o

GT
k ) =

⃒
⃒
⃒
⃒
∑22

m lmqT
m −

∑22
m lm q̂m

⃒
⃒
⃒
⃒, where q̂m and qT

m 

denote the label distribution of ground truth and the prediction of the 
teacher, and lm denotes the m-th element in the label set L = (lm = 12+

4k|m = 0,1,…,21). More details could be found in our previous studies 
(Yang et al., 2021). 

Optimization. Our experiments on two tasks were carried out on 4 
NVIDIA 2080Ti GPUs with 11GB memory. The networks were trained by 
the Adam optimizer on the PyTorch 1.6 platform. Moreover, cross- 
entropy was applied as the loss function for the AD classification task. 
For brain age estimation, a KL divergence was used to measure the 
similarity between the output prediction and the manually designed 
distribution. 

Training details. The networks were trained with an initial learning 
rate of 1e− 6, and an L2 wt decay coefficient of 5e− 5. The learning rate 
was increased linearly to 1e− 4 in 10 warmup epochs. The best model 
was obtained based on the validation loss. The models were trained in 
120/260 epochs for the AD classification and brain age prediction 
respectively. The batch size was set to 32. To reduce the risk of over-
fitting, two data argumentation methods were applied during training: 
random rotation and random shifting. The rotation angles were between 
− 10◦ and 10◦, and the input was randomly shifted by 5 voxels along 
every axis with equal probability. Hyper-parameters of temperature τ 
and gating scale η would be discussed further in the results. 

Measurement. Moreover, to evaluate the performance of competi-
tive methods, different metrics were implemented for various tasks. For 
the AD classification task, the accuracy (ACC), Sensitivity (SEN), Spec-
ificity (SPE), and area under the curve (ROC-AUC) were used for 
measuring the performance of classification. Mean absolute error 
(MAE), Pearson correlation coefficient (PCC), and cumulative score (CS) 
between the predicted ages and chronological ages were used for the 
brain age prediction task. PCC measures the correlation between the 
predicted ages and the chronological ages. The CS is the accuracy of age 
estimation within a threshold α, which is obtained by: CS(α) =

Ne≤α
N ×

100%, where Ne≤α is the number of samples on which the absolute error 
of prediction e is no higher than the threshold α. For these metrics, a 
higher value indicates a better performance. In addition, we imple-
mented the Expected Calibration Error (ECE) and negative log loss (NLL) 
for measuring whether the predictions were well calibrated, approxi-
mating the difference in expectation between classification accuracy and 
confidence estimates. The predictions were partitioned into 10 bins and 
taken as a weighted average of bins’ difference of confidence and ac-
curacy to evaluate whether the model represents the true correctness 
likelihood. For ECE and NLL, a lower value is better. For each task, the 
experiments were repeated four times, where the samples are randomly 
sampled into a train set (90%), and a validation set (10%). We fixed the 
validation set as well as the random seed for each fold and averaged the 
results for comparison. 

4. Results 

In this study, we evaluated our proposed self-distillation approach on 
two tasks. In the following sections, we first demonstrate details of the 
parameter setting in Section 3.1 and then show results of the applica-
tions on the AD classification and brain age prediction tasks in Section 
3.2 and Section 3.3 respectively. 

4.1. Parameter discussion 

In our study, we tuned the hyperparameters to check the effect of the 
2 http://brain-development.org  
3 http://www.nitrc.org/projects/fcon_1000 
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performance. Considering that a full grid search for all these hyper- 
parameters costs numerous time and resources, we first fixed the 
relaxation temperature τ and searched within [0.5, 0.9, 1, 3, 10] for both 
tasks. With obtained relaxation temperature, we searched the loss 
weights λ1 and λ2 to measure the balancing of the combined loss within 
the set of [0.2, 0.4, 0.6, 0.8, 1.0]. 

These parameters of the best models are listed in Table 2. For the AD 
classification task, all four models achieve the best performance with a 
temperature of 0.9. While the loss weights λ1 and λ2 are sensitive to 
performance, and are critical parameters that determine the extent of 
probability and feature transferring context for regularization. One 
might wonder if the architectures are related to these choices. For simple 
architectures like ResNet-18, it is available to use higher values for the 
loss weights for strong regularization. However, for more complex ar-
chitectures such as InceptionV3, higher values could lead to over- 
regularization and decrease performance. In the brain age prediction 
task, the temperatures of 3/10/3/10 are the best for the ResNet-18, 
ResNet-50, SFCN, and DeepBrainNet respectively. Low temperature 
settings are known to protect models from noisy negative labels, while 
high temperature settings mitigate the peakiness of teacher logits and 
enable learning from negative labels (Cho and Hariharan, 2019; Zhou 
et al., 2021). For the brain age distribution learning, a higher temper-
ature contributes to capturing the label ambiguity between ages. How-
ever, it is important to note that the performance does not show 
significant changes with different temperature settings. Besides, 
regarding the loss weights, they are set to be the same since they only 
have a slight impact on performance in the brain age distribution 
learning task. To summarize, a temperature setting of 0.9 is effective for 
achieving high performance in most classification cases, while a higher 
temperature value is preferable for distribution learning. The choice of 
λ1 = 0.8 is suitable for the majority of scenarios. 

4.2. Results of AD classification 

4.2.1. Comparison with competitive methods 
Table 3 shows the validation results on four well-estimated CNN 

models including ResNet-18, ResNet-50, Densenet-121, and Incep-
tionV3. The performances of accuracy, sensitivity, specificity, and ROC- 
AUC are listed, where the best results are marked in bold, and the second 
best are underlined. Statistical results are displayed to measure the 
improvements, where * denotes the performance is significantly 
improved with a p-value < 0.05. The baseline column indicates the 
teacher model. From these results, we can see that distillation on both 
the softmax output (e.g. TFKD, PSKD) and the intermediate features (e.g. 
FitNets and FRSKD) achieve improvements on four well-estimated 
baseline models. However, not all the distillation methods achieve 
consistent improvements in all four architectures. For example, FRSKD 
achieves comparable accuracy results with the baseline teacher method 
by using ResNet18 (ACC: 88.05% vs. 87.05%) and InceptionV3 (ACC: 
90.21% vs. 90.21%). Overall, PSKD and TFKD achieve consistent im-
provements over the baseline teacher model and outperform other ap-
proaches in most architectures. 

Compared with these state-of-the-art models, our proposed CReg-KD 

achieves consistent improvements on all four architectures. Especially, 
CReg-KD outperforms other state-of-the-art distillation approaches with 
2.8%, 0.41%, 0.4%, and 1.4% improvements. Moreover, ResNet-18 
using CReg-KD enhances the accuracy from 87.05% to 92.35% 
without increasing model parameters in the student model. Apart from 
the promising results, we can also see that the distillation approaches 
could enhance the performance without limitation to the baseline 
models, where improvements are achieved on all four models. The ROC 
curve comparison is shown in Supplementary A.1, where the curves are 
obtained by validation results on all folds and then smoothed. Overall, 
the InceptionV3 model with CReg-KD achieves the best performance 
with an accuracy of 94.05%, a sensitivity of 94.65%, a specificity of 
93.57%, and a ROC-AUC of 94.11%. 

4.2.2. Generalization performance 
As shown in Fig. 2, the learning curves (upper) and the differences 

(lower) in terms of accuracy are plotted on four well-estimated models. 
In the learning curves, the accuracies of training and validation in the 
teacher model are shown in dark and light blue, and those in the student 
are figured in dark and light orange. From the results, we can observe 
that the student model gets convergence faster than the teacher model 
(blue vs. orange) in both training and validation. It is reasonable as the 
knowledge distillation facilitates the student to learn from additional 
knowledge provided by the teacher model; The knowledge distillation 
paradigm penalizes the student learning with calibrated knowledge, 
which optimizes the backpropagation with regularized gradient. In 
addition, the differences between the training and validation accuracy 
are plotted below the learning curves, where the blue and orange indi-
cate the differences in the student and teacher models respectively. The 
differences of student models on all four architectures tend to be smaller 
than the teacher models, which indicates that the overfitting is mitigated 
and generalization performances are enhanced to some extent. Espe-
cially on the ResNet-18 model, the difference between training and 
validation loss of the student model is significantly reduced in the 
beginning process, compared with the teacher model. This might lead to 
the model getting convergence more stably and robustly. 

In addition, we listed the expected calibrated error rate and the 
negative log loss in Table 4. The two measurements are used to evaluate 
the quality of predictive probabilities in terms of confidence estimation. 
The results in the table show that our proposed CReg-KD achieves better 
performance on confidence estimation. Compared to the baseline 
teacher model, 1.08%, 0.95%, 0.44%, and 0.53% ECE, 0.12, 0.03, 0.1, 
and 0.03 NLL are reduced on ResNet-18, ResNet-50, DenseNet-121, and 
InceptionV3 respectively. Overall, CReg-KD achieved the best confi-
dence estimation performance on most architectures. 

4.2.3. Ablation study 
Moreover, in this study, we perform ablation studies to measure the 

effect of each component involved in CReg-KD. Table 5 listed the results 
of the studies on the effect of the gating mechanism, softmax output 
distillation, and attentive feature refinement, where the results in the 
first 2 rows are the same as those of the teacher model and TFKD. 
Moreover, from the results, we can see that as the number of components 
increases, the performances are enhanced progressively. In particular, 
the gating mechanism plays a key role in improving performance, which 
further enhances accuracy. For example, with the gating mechanism, the 
accuracy is increased from 87.75% to 90.93% on the ResNet-18 model 
even without feature distillation. However, the performance of 
DenseNet-121 dropped by 0.81% with the gating (row2: 91.96% vs. 
row5: 91.15%). This might be caused by an unsuitable gating, which 
might regularize the student learning strictly and cause over- 
regularization. Nevertheless, by gating the softmax outputs and fea-
tures, DenseNet-121 outperforms other ways of distillation. In addition, 
the second-to-last line demonstrates the performance of our previous 
method (Yang et al., 2021) which utilizes the gating mechanism and raw 
feature distillation for regularization. Comparing these results to our 

Table 2 
The hyper-parameter settings for the four models in two tasks including the 
temperature τ, loss weights λ1 and λ2.  

Task Model τ λ1 λ2 

AD classification ResNet-18 0.9 1.0 1.0 
ResNet-50 0.9 0.8 0.2 
DenseNet-121 0.9 0.8 0.2 
InceptionV3 0.9 0.4 0.6 

Brain age estimation ResNet-18 3.0 0.8 0.8 
ResNet-50 10.0 0.8 0.8 
SFCN 3.0 0.8 0.8 
DeepBrainNet 10.0 0.8 0.8  
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proposed feature refined layers, we observe improved performances 
across all four architectures consistently. This improvement can be 
attributed to the integration of attentive local contexts, which adap-
tively supervise the learning of the student model. Overall, with the 
gating of both softmax output and feature representations, all four 
well-estimated CNN models achieve the best performances. 

Moreover, we figured out the effect of the gating scale setting in 
Fig. 3. It is shown that as the scale increases, the performances in terms 
of accuracy tend to increase and then decrease. The optimal results are 
achieved with a scale of 0.3 or 0.35. In addition, the performances are 
comparable to those of TFKD or FRSKD when the scale is greater than 
0.35, which indicates that most knowledge is transferred for distillation. 
The detailed values are listed in Supplementary materials A.2. 
Furthermore, from Table 3 and Fig. 3, we can see that an unsuitable 
setting of scale might decrease the performances, where the perfor-
mances with the gating are lower than those without the gating. For 
example, the DenseNet-121 without the gating (91.25%) achieves better 
than that using the gating with a scale lower than 0.2 (0.05: 90.90%; 0.1: 
90.90%; 0.15: 90.56%). We suspect that the teacher model might pro-
vide over-regularization information to regularize student learning. 

Furthermore, the effects of the way for feature refinement are 
measured and plotted in Fig. 4 with error bars and averaged values of 
accuracy performance. It can be seen that refining intermediate repre-
sentations by power and mean ϕpow mean outperforms other feature ag-
gregation methods. And consistent improvements are obtained in all 
four architectures. Especially, compared with using raw features, 2.21%, 
0.76%, 2.84%, and 2.05% improvements are obtained on ResNet-18, 
ResNet-50, DenseNet-121, and InceptionV3 respectively. Besides, 
refining by ϕmean decreases the performance significantly in most 
models, and the performances are even lower than using the raw fea-
tures. We suspect that the simple averaging operation might harm the 
injective transformation of representations, and limit the spatial di-
versity of the feature maps. 

4.2.4. Evaluation on different sizes of samples 
To further evaluate the performance and generalizability of our 

proposed CReg-KD method on medical images with limited samples, we 
conducted comparisons by training models with different sample sizes 
(i.e., 25%, 50%, 75%, and 100% of the training samples). It’s worth 
noting that the testing samples remained fixed and consistent with 
previous comparisons. Fig. 5 presents the accuracy performance of four 
architectures using different regularization approaches: baseline (red), 
TFKD (orange), PSKD (green), BYOT (black), and our CReg-KD (blue). 
These regularization methods demonstrate superior performance in 

most cases for both AD classification and brain age prediction tasks. The 
results show a consistent drop in performance for the baseline models as 
the training samples decrease across all four architectures. Additionally, 
architectures with more parameters, such as InceptionV3, outperform 
other models with varying sample sizes. Moreover, our proposed CReg- 
KD method stands out as the top-performing regularization approach 
among all the knowledge distillation methods. Notably, InceptionV3 
with CReg-KD, using only 75% of the data (Acc: 93.76%), achieves 
comparable performance to using 100% of the data (Acc: 94.05%). This 
can be attributed to both the effective model architecture of InceptionV3 
and the proposed knowledge distillation term, which enhances gener-
alizability. Furthermore, our CReg-KD significantly improves the per-
formance of ResNet-18 and ResNet-50 models with only 25% training 
data, with improvements of 4.75% and 5.37% respectively. This in-
dicates that our CReg-KD is a promising tool for enhancing performance 
and generalization in cases of limited medical images. Furthermore, we 
suspect that even training with 100% data may not be sufficient to 
overcome overfitting and poor generalization, as the number of involved 
samples still remains insufficient. Therefore, the observed improve-
ments overall can also be attributed to addressing the generalizations. In 
summary, our findings demonstrate the effectiveness of CReg-KD in 
improving performance and generalization with limited medical image 
samples, and highlight its potential for addressing the challenges posed 
by insufficient data in medical imaging tasks. 

4.3. Results of brain age prediction 

4.3.1. Comparison with competitive methods 
To further verify our proposed CReg-KD for medical image analysis, 

we also evaluated its application on brain age prediction. The experi-
mental results are shown in Table 6, where the averaged results and 
standard deviation across folds in terms of MAE, PCC, and CS scores are 
listed. The statistical analysis was performed by the Wilcoxon test, 
where significant improvements with a p-value below 0.05 are shown 
with * in the table. From the results, we can see that the two specially 
designed models, i.e. SFCN and DeepBrainNet, outperform the general- 
purpose models (ResNet-18 and ResNet-50). Especially, the SFCN model 
with fewer parameters could obtain promising performances for brain 
age estimation, which corresponds to previous findings (Peng et al., 
2021). Moreover, CReg-KD performs the best on all four well-estimated 
models and achieves consistent improvements over other regularization 
methods, where the DeepBrainNet model achieves the best performance 
with the MAE of 2.162, the CS of 90.986%, and the PCC of 0.989. The 
scatter plots of predictions are displayed in A.3 in the supplementary 

Table 3 
Comparison results on AD classification in terms of accuracy (Acc%), sensitivity (Sen%), specificity (Spe%), and the area under the curve (ROC-AUC%). Competitive 
approaches TFKD, PSKD, FitNets, FRSKD, and BYOT are included for evaluation. The best results are shown in bold, and the second best are shown with an underline 
with average and standard deviation across folds (Mean±Std).  

Models Metric Baseline TFKD PSKD FitNets FRSKD BYOT CReg-KD 

ResNet-18 ACC↑ 87.05±5.00 87.75±4.38 90.55±2.11* 87.39±4.02 88.05±3.36 89.87±2.23 92.35±2.10* 
SEN↑ 91.32±4.55 82.56±7.14* 92.02±3.14 88.40±5.80 84.10±7.72 87.00±5.83 93.94±2.36 
SPE↑ 83.11±6.99 92.57±2.24* 89.19±3.31* 86.49±5.41 89.86±4.83* 92.57±2.24* 91.89±3.31* 
ROC-AUC↑ 87.22±4.95 87.57±4.47 90.60±2.08* 87.44±4.02 86.98±3.46 89.78±2.31 92.41±2.06* 

ResNet-50 ACC↑ 88.45±1.58 89.51±2.51 91.61±1.00* 88.81±2.24 90.90±1.62 90.55±2.31 92.02±2.48* 
SEN↑ 87.95±1.46 90.59±3.72 92.06±3.1 86.28±5.40 92.73±2.55 92.04±2.35 94.94±3.77* 
SPE↑ 89.86±2.24 88.51±3.51 91.22±2.24 91.22±6.16 89.19±1.91 89.19±3.31 88.51±5.85 
ROC-AUC↑ 88.41±1.57 89.55±2.50 91.64±1.04 88.75±2.18 90.96±1.62 90.61±2.29 91.73±1.89 

DenseNet-121 ACC↑ 86.01±2.22 91.96±1.18* 88.80±2.29 89.50±3.54 88.46±3.33 91.95±1.21* 92.36±2.27* 
SEN↑ 89.81±6.11 93.47±2.42 87.63±4.43 89.83±3.31 89.81±3.37 92.00±4.37 94.20±2.90 
SPE↑ 82.43±4.05 90.54±1.35* 89.86±2.24 89.19±6.62* 87.16±7.25 91.89±4.27* 89.19±5.06 
ROC-AUC↑ 86.12±2.32 92.00±1.20* 88.75±2.34 89.51±3.44 88.49±3.24 91.94±1.20 92.70±2.19* 

InceptionV3 ACC↑ 90.21±3.11 92.65±1.17* 91.60±2.02 92.65±2.09 90.21±1.97 92.31±1.56 94.05±1.20* 
SEN↑ 89.71±7.10 93.47±3.23 93.47±3.81 92.75±4.35 89.42±6.15 94.20±0.08 94.65±1.45 
SPE↑ 92.57±5.19 91.89±2.70 89.86±2.24 92.57±5.19 91.89±5.06 90.54±3.02 93.57±2.24 
ROC-AUC↑ 90.14±3.14 92.68±1.20 91.67±2.05 92.66±2.03 90.16±2.00 92.37±1.51 94.11±1.16  

* : significant outperforming with the p-value < 0.05. 
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materials. Both the experimental results and statistical analysis indicate 
that our proposed method is a promising and powerful tool for model 
regularization to improve performance. 

4.3.2. Generalization performance 
On the other hand, we demonstrate the error rate results in Table 8, 

where the KL divergence score is applied to measure the errors between 
the learned outputs and the target distributions. The standard deviation 
values are ignored since the values are too small for comparison. The 
results demonstrate that our proposed CReg-KD framework achieves the 
lowest error in all four architectures, indicating that the generalization 

ability is better than other methods. Moreover, the learning curves and 
differences are plotted in Supplementary A.4. The results correspond to 
those in the AD classification task, where the student models achieve 
smaller differences than the teacher model in most architectures. 
Overall, our proposed CReg-KD is robust and generalizes to brain age 
estimation. 

4.3.3. Ablation studies 
Finally, we applied ablation studies for the brain age estimation task. 

Table 7 lists the results, where the best are shown in bold, and the second 
best are shown with an underline. We can observe that the gating 

Fig. 2. Plots on the learning curves and differences of four architectures in terms of accuracy, where the performances of ResNet-18, ResNet-50, DenseNet-121, and 
InceptionV3 are figured. The learning curves were smoothed by plotting the best performance before the current epoch. The orange and the blue represent the 
teacher model and the student model respectively. The differences in accuracy between the training and validation are shown below the learning curves. The student 
models tend to get convergence faster than the teacher models and achieve smaller differences. 
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Table 4 
ECE (%) and NLL results on AD classification on ResNet-18, ResNet-50, DenseNet-121, and InceptionV3. The results are shown with mean and standard deviation 
across folds (Mean±Std).  

Models Metric Baseline TFKD PSKD FitNets FRSKD BYOT CReg-KD 

ResNet-18 ECE↓ 10.92±1.14 11.14±2.36 10.62±0.64 12.87±3.95 10.94±2.55 9.90±1.86 9.84±2.55 
NLL↓ 0.41±0.08 0.42±0.09 0.33±0.05 0.37±0.21 0.40±0.07 0.34±0.09 0.29±0.04 

ResNet-50 ECE↓ 9.02±1.42 7.75±1.40 8.48±2.11 11.35±2.41 8.92±2.53 9.4 ± 2.32 8.07±2.63 
NLL↓ 0.34±0.05 0.34±0.04 0.31±0.03 0.35±0.13 0.35±0.04 0.51±0.13 0.31±0.03 

DenseNet-121 ECE↓ 8.51±3.07 8.51±0.83 8.81±1.33 11.16±4.02 9.17±2.09 8.14±1.30 8.07±1.27 
NLL↓ 0.39±0.07 0.29±0.04 0.33±0.05 0.37±0.22 0.35±0.08 0.40±0.22 0.29±0.06 

InceptionV3 ECE↓ 8.45±4.48 8.38±0.79 8.13±2.06 8.80±1.29 9.29±2.44 8.73±1.50 7.92±1.99 
NLL↓ 0.36±0.03 0.36±0.06 0.39±0.04 0.39±0.08 0.35±0.04 0.54±0.13 0.33±0.10  

Table 5 
Ablation studies on the effect of the gating mechanism, output distillation, and feature distillation. The components involved are listed √. Results of accuracy are 
shown with mean and standard deviation (Mean±Std).  

Gating Output distillation Feature distillation ResNet-18↑ ResNet-50↑ DenseNet121↑ InceptionV3↑    

87.05±5.00 88.45±1.58 86.01±2.22 90.21±3.11  
√  87.75±4.38 89.51±2.51 91.96±1.18 92.65±1.17   

√ 88.23±3.84 89.44±2.62 90.50±2.96 90.72±1.99  
√ √ 89.94±2.33 89.97±2.30 91.25±1.22 91.60±1.03 

√  √ 91.40±2.05 90.62±2.27 92.20±1.78 92.66±0.64 
√ √  90.93±3.45 90.28±1.70 91.15±1.23 92.66±0.57 
√ √ * 91.84±2.08 91.55±2.31 91.90±1.38 93.00±1.75 
√ √ √ 92.35±2.10 92.02±2.48 92.36±2.27 94.05±1.20  

* indicates the raw feature distillation without refinement. 

Fig. 3. The effect of the scale setting on ResNet-18 (red), ResNet-50 (orange), DenseNet-121 (green), and InceptionV3 (blue) models in terms of AD classification 
accuracy, where the scale ranged from 0.05 to 0.4. The best performances of the four architectures are achieved on the value of 0.3 or 0.35. 

Fig. 4. The effect of the feature refinement on four architectures, including power and mean (orange), mean power (yellow), mean (light green), and raw features 
(dark green). The function ϕpow mean outperforms other functions consistently. 
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mechanism plays an important role in improving performance, which 
corresponds to the results in the AD classification task. In addition, 
taking the output and feature distillation together might even decrease 
the performance. For example, with output and feature distillation, 
ResNet-18 without gating performs worse than using output or feature 
distillation alone. Nevertheless, when we combine all the components, 
further improvements are achieved in all the architectures. Additionally, 
we conducted a comparison between CReg-KD with refined feature 
distillation (the second line from the bottom) and Gated-KD (the first 

line from the bottom) (Yang et al., 2021) with raw feature distillation, 
with their performances listed in the second row from the bottom. The 
results indicate that the inclusion of the attentive refinement layer does 
not have a detrimental effect on performance. Compared with raw 
feature distillation, slight improvements are achieved on four architec-
tures by CReg-KD. In particular, Gated-KD and CReg-KD achieves com-
parable results on the DeepBrainNet model. This suggests that the 
models may have reached their performance limit for the brain age 
prediction. 

Fig. 5. Evaluation on the AD classification by training with different sizes of samples on A) ResNet-18, B) ResNet-50, C) DenseNet-121, and D) InceptionV3 by using 
various knowledge distillation regularization terms. 

Table 6 
Comparison results on brain age prediction in terms of mean absolute error (MAE), Pearson Correlation Coefficient (PCC), and Cumulative Score (CS%). The baseline 
column indicates the teacher model. The best results are shown in bold, and the second best are shown with an underline.  

Models Metric Baseline TFKD PSKD FitNets FRSKD BYOT CReg-KD 

ResNet-18 MAE↓ 2.689±0.019 2.592±0.013 2.648±0.015 2.607±0.026 2.528±0.020* 2.466±0.032* 2.413±0.013* 
PCC↑ 0.982 0.984 0.985 0.985 0.985 0.985 0.987* 
CS↑ 85.352 85.070 85.915 85.915 88.169 88.451 88.169 

ResNet-50 MAE↓ 2.552±0.016 2.514±0.034 2.510±0.018 2.576±0.021 2.593±0.012 2.434±0.018* 2.391±0.016* 
PCC↑ 0.987 0.986 0.987 0.986 0.986 0.985 0.988 
CS↑ 86.478 86.479 86.761 86.761 85.915 88.887 88.451 

SFCN MAE↓ 2.342±0.020 2.345±0.015 2.325±0.039 2.315±0.025* 2.377±0.013 2.341±0.015 2.217±0.026* 
PCC↑ 0.988 0.989 0.989 0.990 0.989 0.989 0.991 
CS↑ 85.955 87.921 87.921 87.640 87.640 89.326 91.292 

InceptionV3 MAE↓ 2.349±0.026 2.316±0.026* 2.364±0.021 2.345±0.016 2.385±0.026 2.295±0.027* 2.162±0.027* 
PCC↑ 0.986 0.988 0.987 0.987 0.985 0.988* 0.989* 
CS↑ 88.600 89.296 87.605 89.014 89.014 88.169 90.986  

* : significantly outperforming with p-value < 0.05. 

Table 8 
KL divergence results on brain age classification on ResNet-18, ResNet-50, SFCN, and DeepBrainNet. The results denote the predicted errors, which are the differences 
between predicted and manually designed distribution. A lower value indicates better confidence estimation.  

Models Metric Baseline TFKD PSKD FitNets FRSKD BYOT CReg-KD 

ResNet-18 KL↓ 0.0140 0.0127 0.0126 0.0124 0.0126 0.0129 0.0116 
ResNet-50 KL↓ 0.0117 0.0125 0.0121 0.0130 0.0119 0.0125 0.0115 
SFCN KL↓ 0.0116 0.0109 0.0111 0.0102 0.0119 0.0108 0.0102 
DeepBrainNet KL↓ 0.0122 0.0114 0.0120 0.0113 0.0122 0.0115 0.0108  

Table 7 
Ablation studies on the effect of the gating mechanism, output distillation, and feature distillation for brain age estimation. The components involved are listed with √. 
Results are shown with mean and standard deviation.  

Gating Output distillation Feature distillation ResNet-18↓ ResNet-50↓ SFCN↓ DeepBrainNet↓    

2.689±0.019 2.552±0.016 2.342±0.020 2.349±0.026   
√ 2.549±0.019 2.547±0.029 2.359±0.021 2.369±0.024  

√  2.592±0.013 2.514±0.034 2.345±0.015 2.316±0.026  
√ √ 2.677±0.016 2.466±0.021 2.310±0.031 2.349±0.021 

√  √ 2.515±0.014 2.579±0.011 2.274±0.015 2.171±0.022 
√ √  2.577±0.019 2.421±0.016 2.301±0.018 2.282±0.024 
√ √ * 2.508±0.022 2.402±0.027 2.234±0.019 2.168±0.021 
√ √ √ 2.413±0.013 2.391±0.016 2.217±0.026 2.162±0.027  

* indicates the raw feature distillation without refinement. 
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. 

4.3.4. Evaluation on different sizes of training samples 
We also assessed the performance of the four architectures in pre-

dicting brain age using different sample sizes in Fig. 6. Consistent with 
the results in Section 4.2.4, the four architectures trained with our 
proposed CReg-KD consistently achieved the best performance among 
all the knowledge distillation methods. In comparison, other knowledge 
distillation approaches, i.e. TFKD, PSKD, and BYOT, outperformed the 
baseline but achieved similar performance across all architectures. 
Furthermore, our CReg-KD demonstrated significant improvements in 
brain age prediction performance. The consistent improvement in both 
AD classification and brain age prediction tasks highlights the general-
ization ability and robustness of our proposed CReg-KD across various 
tasks. Overall, our findings underscore the effectiveness of CReg-KD in 
improving performance across different architectures for brain age 
prediction. Additionally, the consistent performance improvements in 
both AD classification and brain age prediction tasks provide further 
evidence of the versatility and reliability of our proposed CReg-KD 
approach. 

5. Discussion 

In this study, we proposed a Confidence Regularized Knowledge 
Distillation (CReg-KD) for filtering teacher knowledge and refining in-
termediate representations with attentive semantic contexts. The results 
demonstrate that the CReg-KD can efficiently improve the performance 
as well as generalization ability by carrying out two experiments: AD 
classification and brain age estimation. Extensive evaluations reveal that 
CReg-KD outperforms most existing state-of-the-art knowledge distilla-
tion approaches, and facilitates providing more accurate confidence 
estimation. Specifically, InceptionV3 improved the average accuracy 
from 90.21% to 93.05% in AD classification, and DeepBrainNet ach-
ieved an MAE of 2.162 in brain age estimation. The results demonstrate 
the superiority of the proposed CReg-KD as a powerful regularization 
paradigm for brain imaging analysis. 

On the other hand, apart from TFKD and FitNet, the CReg-KD 
framework regularizes the student model learning by penalizing both 
the softmax output and intermediate representations. From Table 1 and 
Table 4, we can see that distillation on either the softmax output or hint 
features could achieve improvements on different models. Nevertheless, 
PSKD performed better than FitNets on ResNet-18 (90.55% vs. 87.39%) 
and ResNet-50 (91.61% vs. 88.81%), while worse on DenseNet-121 
(88.80% vs. 89.50%) and InceptionV3 (91.60% vs. 92.65%) for AD 
classification. The same thing also happened in the brain age prediction 
task. From this point of view, it is still unclear to sense whether to 
perform distillation on the softmax output or the intermediate repre-
sentations. One way to address this issue is by penalizing them together. 
However, by assessing the ablation study results in Table 5 and Table 7, 
we can see that the performance of distillation on both softmax output 

and hint features (the fourth row) might be worse than distillation on 
only one (the second or the third row). For example, on the AD classi-
fication task, the InceptionV3 model with both output and feature 
distillation achieves 91.60% accuracy on average, which is lower than 
that using output distillation alone with an accuracy of 92.65%. We 
suspect that this may be resulted from over-regularization due to an 
inappropriate selection of intermediate representations. And the 
increased dimensions of input might raise the computational burden for 
mimicking high-dimensional intermediate feature representations. In 
addition, once the gating mechanism is onset, the issue would be miti-
gated. One main reason is that the gating of knowledge is an attentive 
function that adaptively mediates the regularization paradigm in stu-
dent learning, and softens the transferred knowledge to provide a trade- 
off for knowledge transfer. 

In this study, we carried out experiments on four architectures for 
two tasks, including the baseline model ResNet18, and the state-of-the- 
art backbone InceptionV3. Interestingly, in AD classification, the simple 
model ResNet-18 with CReg-KD performs better than the teacher model 
by using InceptionV3. Moreover, it even outperforms the Dual Attention 
Multi-Instance Deep Learning model (AD vs. NC: 92.4%) (Zhu et al., 
2021), which is a state-of-the-art model typically designed for AD clas-
sification. Although the data preprocessing pipeline and enrolled par-
ticipants are not entirely the same, the results demonstrate the power of 
self-supervised knowledge distillation for improving performance in 
medical image classification to some extent. Overall, the proposed 
CReg-KD framework is powerful to improve model performance and 
generalization ability for medical image analysis. 

This study has some limitations. Our proposed CReg-KD is imple-
mented based on a pre-trained teacher model and transfers knowledge 
from the teacher to the student model. Previous studies have demon-
strated that this teacher model can be leveraged by past predictions at a 
certain epoch (Kim et al., 2021) or the student model itself (Zhang et al., 
2019). One of our future works is to leverage these paradigms with our 
proposed CReg-KD framework for improving training efficiency, as well 
as remaining comparable performances. Moreover, the gating scale 
value plays a key role in the performance and is decided by a grid search. 
In the future, we would investigate an efficient way of measuring the 
gating scale value. 

6. Conclusion 

Learning with limited samples as well as achieving promising per-
formance and generalization is a challenging task in medical image 
analysis. In this study, we revisit the knowledge distillation technology 
as a regularization paradigm by introducing additional knowledge to 
reinforce student learning. Accordingly, we propose a confidence- 
regularized knowledge distillation framework and demonstrate its 
feasibility and generalization ability on two tasks: AD classification and 
brain age estimation. By investigating the confidence of transferred 
knowledge and the semantics of representations, our proposed CReg-KD 

Fig. 6. Evaluation on the brain age prediction by training with different sizes of samples on A) ResNet-18, B) ResNet-50, C) SFCN, and D) DeepBrainNet by using 
various knowledge distillation regularization terms. 
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provides a way of attentive regularization for penalizing distilled 
knowledge in both intermediate representations and softmax output. 
Extensive experimental results show the superiority of CReg-KD in 
achieving consistent improvements over baseline models and out-
performing other state-of-the-art knowledge distillation methods. 
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