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Mapping Multi-modal Brain Connectome for
Brain Disorder Diagnosis via Cross-modal

Mutual Learning
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Abstract— Recently, the study of multi-modal brain con-
nectome has recorded a tremendous increase and facili-
tated the diagnosis of brain disorders. In this paradigm,
functional and structural networks, e.g., functional and
structural connectivity derived from fMRI and DTI, are in
some manner interacted but are not necessarily linearly
related. Accordingly, there remains a great challenge to
leverage complementary information for brain connectome
analysis. Recently, Graph Convolutional Networks (GNN)
have been widely applied to the fusion of multi-modal brain
connectome. However, most existing GNN methods fail to
couple inter-modal relationships. In this regard, we propose
a Cross-modal Graph Neural Network (Cross-GNN) that
captures inter-modal dependencies through dynamic graph
learning and mutual learning. Specifically, the inter-modal
representations are attentively coupled into a composi-
tional space for reasoning inter-modal dependencies. Ad-
ditionally, we investigate mutual learning in explicit and im-
plicit ways: (1) Cross-modal representations are obtained
by cross-embedding explicitly based on the inter-modal
correspondence matrix. (2) We propose a cross-modal dis-
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tillation method to implicitly regularize latent representa-
tions with cross-modal semantic contexts. We carry out sta-
tistical analysis on the attentively learned correspondence
matrices to evaluate inter-modal relationships for associ-
ating disease biomarkers. Our extensive experiments on
three datasets demonstrate the superiority of our proposed
method for disease diagnosis with promising prediction
performance and multi-modal connectome biomarker loca-
tion.

Index Terms— Multi-modal learning, graph neural net-
work, brain disorder, self-distillation, cross-modal

I. INTRODUCTION

Recently, the connectome or brain network has represented
an indispensable foundation for brain disorder research, which
enables the exploration of the complex relationship between
brain dysfunctions and behavioral phenotypes [1], [2]. Concep-
tualizing the brain as a network provides a more holistic view
of relating abnormal discharge of the brain and dysfunction.
Recent investigations have successfully examined and identi-
fied disconnectome underlying diseases in neurodegenerative
and psychiatric brain diseases, such as Alzheimer’s disease
(AD) and Parkinson’s disease (PD) [3], [4].

Various modalities of magnetic resonance imaging (MRI)
and neurophysiological data have been reported to constitute
brain networks. Functional networks can be constructed from
functional MRI (fMRI) and electroencephalography (EEG),
while structural networks are constructed from diffusion tensor
imaging (DTI) or diffusion spectrum imaging (DSI) [5]–[7].
Combining functional and structural connectome enables the
exploration of brain state by neuron activation and connection
in vivo, where the complementary between functional and
structural networks offers a more constructive scene with
distinctive biomarkers.

Among the state-of-the-art approaches, Graph Neural Net-
works (GNN) are powerful and promising tools for graph-
structured brain network learning and have recently gained
tremendous interest in the neuroscience field. Typically, a
GNN architecture takes each brain as a graph, where each
brain region is represented as a node, and the connectivity
is implemented to construct the adjacency matrix. With the
advantage of capturing the structural information contained
within feature interactions in the graph domain, GNNs have
achieved inspiring performances in brain disorder classifica-
tion [8]–[10].
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In general, integrative analysis of multiple types of connec-
tomes by GNN could advance the exploration of high-level
latent and complicated representations to improve diagnostic
performance. However, this feature has been insufficiently
investigated, and it remains non-trivial to model multi-modal
neuroimages due to the following challenges. First, the sample
size of most existing cohorts is relatively small, while the
number of nodes can be very large with noisy estimates
of connectivity. Feeding multi-modal features into models
without consideration of their intrinsic dependencies increases
the dimension of input features and might lead to overfitting
and decreased performance. Second, the basic physiological
mechanism is still not well understood, and the associations
between functional and structural pathways remain uncertain
[11]. Although the functional and structural pathways are
considered to be mediated by each other [12], [13], the
complementary information from multi-modal features is not
necessarily linearly related. Finally, most existing graph-based
approaches are proposed for mono-modal data and are limited
to modeling sophisticated associations among multi-modal
nodes due to heterogeneity. In addition, there is a lack of
joint compositional reasoning of functional and structural
connectomes in these graph-based models.

In light of the above-mentioned issues, in this study, we
introduce an efficient Cross-modal Graph Neural Network
(Cross-GNN) that utilizes a dynamic graph with mutual learn-
ing. In detail, to characterize inter-modal intrinsic dependen-
cies and to address the issue of unknown node relationships
in multi-modal graphs, we propose to relate multi-modal as-
sociations through dynamic graphs, where the adjacent matrix
representing inter-modal dependencies is modeled attentively
in a data-driven manner. Specifically, the functional and struc-
tural connectomes are encoded and further associated into a
compositional space for reasoning. A correspondence factor
matrix is obtained for each participant that captures the cor-
responding values of each pair of nodes between modalities.

Moreover, we propose to model multi-modal complemen-
tary features in both explicit and implicit ways. On one
hand, cross-modal representations are explicitly translated by
the inter-modal correspondence matrix. On the other hand,
we leverage the self-knowledge distillation mechanism for
online mutual learning, where multi-modal representations
are cross-distilled to learn with regularized modality-specific
semantic context. In this way, cross-modal latent features are
regularized with cross-modal semantic contexts implicitly. A
Bilateral Graph Convolution (BGC) layer is further proposed
to aggregate multi-modal representations for complementary
message passing by taking the correspondence matrix as the
adjacency matrix.

Extensive experiments on three datasets were carried out to
evaluate the superiority of our method in disease prediction.
The learned correspondence matrices were further leveraged
to examine multi-modal dependencies as well as to relate
key biomarkers. The results indicate that our proposed Cross-
GNN provides a promising graph framework for multi-modal
learning in terms of prediction and explanation.

The rest of our paper is structured as follows. We would
like to review related methods in terms of connectome study,

multi-modal neuroimaging, and self-knowledge distillation ap-
proaches in Section II. The details of the proposed model are
introduced in Section III. Section IV describes the experiment
settings. The results are provided and discussed in Section V.
Section VI draws the conclusions of the work.

II. RELATED WORKS

A. Brain connectome network study

Decoding functional or structural neural communication
of the brain enables us to understand the associations be-
tween brain network organizations and disorders. Promising
progress has been made in the past decade using neuroimaging
techniques to identify brain network alterations underlying
brain disorders. Recent connectome-wide association studies
(CWAS) investigations have successfully identified functional
dysconnectivity in neurodegenerative and psychiatric brain
diseases. Network-based statistical (NBS) analysis [14] and
multivariate distance matrix regression (MDMR) [15] are two
widely used statistical tools for the systematic quantification
of connectome reorganization across the whole-brain network.
Based on the returned key biomarkers, machine learning
models such as SVM and random forest are leveraged for clas-
sification [4], [16], [17]. However, these approaches are often
deficient in modeling high-order nonlinear intrinsic attributes
and are limited in their performances.

1) Convolution neural network: Deep learning is a different
strategy for associating brain disorders with complex brain
network variations. Convolutional neural networks (CNN) and
graph neural networks (GNN) facilitate end-to-end disease
identification with promising performances and have been
widely applied for analyzing connectome patterns. Brain-
NetCNN [18] was first proposed to tackle the brain graph
networks as grid-like data, which achieves state-of-the-art
performances in brain network studies. [19] built a CNN
framework to learn embedded features from both static and
dynamic functional connectivity. [20] built a weighted corre-
lation kernel-based convolutional neural network for learning
the hierarchical features. [21] proposed a Deep Convolutional
Auto-Encoder (DCAE) network for learning multi-scale fea-
tures with CNN’s hierarchical feature abstraction ability.

2) Graph Neural Network: Apart from CNN, GNNs retain
a state that can represent information about the neighbors
and structures. Two types of GNNs are commonly used for
connectome studies.

A) Population graphs. A series of studies built graphs on
populations, where each node represents a subject. This type
of approach is carried out in the transductive learning frame-
work with semi-supervised training. For instance, Population-
GCN [22] represented a population of participants as one
graph, where each edge was manifested by inter-participant
phenotypic information and feature similarity. InceptionGCN
[23] was proposed to capture intra- and inter-graph struc-
tural heterogeneity during convolutions. [24], [25] proposed
a similarity-aware adaptive calibrated GCN to consider the
disease status. HI-GCN [26] and TE-HI-GCN [27] associated
graph topology information with the participants’ similarities
by building kernels of multiple thresholds of connectivity.
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MDCN [28] further leveraged hyper-edges to address spatial
specificity in population graphs. One challenge of these models
is that these models are carried out by transductive learning,
and as a result suffers from high computational costs and poor
scalability to unseen data.

B) Brain graphs. Another type of GNN architecture is
to tackle each brain region as a graph node and high-order
message passing or convolution are performed among re-
gions for aggregating neighbor information. The BrainGNN
proposed ROI-aware graph convolutional layers and ROI-
selection pooling layers for neurological biomarker prediction
at the group and individual levels [8]. [29] proposed to learn
a graph similarity metric using a siamese graph convolutional
neural network. However, applying a graph network directly
to the brain connectome is problematic since there remain
unknown relations between brain regions [30]. Recently, dy-
namic graph strategy has been a powerful tool for tackling
the unknown structure issue, such as Dynamic Graph Neural
Network (DGNN) [31], and Dynamic Hyperedge Graph Neu-
ral Network (DHGNN) [32]. [33] proposed a dynamic spectral
graph convolution network by building connectivity from time-
varying correlations of fMRI signals. [34] trained a dynamic
graph network by learning with sparse brain regional connec-
tions from dynamically calculated graph features. Based on
this, we model multi-modal node associations by an adaptive
adjacency matrix, which is obtained by normalizing the cor-
respondence matrix from the compositional space.

B. multi-modal connectome learning

A straightforward way for multi-modal learning is to con-
catenate features and feed them into a classifier such as SVM
or MLP for prediction [35], [36]. To mitigate over-fitting,
feature selection methods were applied to reduce the feature
dimension [37], [38].

Compared with machine learning methods, deep learning
methods are feasible to capture high-order representations
and achieve better performances. [39] proposed a multimodal
fusion network for disease classification based on functional
and structural magnetic resonance images. [40] implemented
multimodal features into a graph with variational edges. [41]
utilized graph hashing learning and converted deep features
into hash codes to maintain the original semantic spatial re-
lationships. [42] proposed to perform a two-layer convolution
on the fMRI and DTI data simultaneously. [43] regularized
convolution on functional connectivity with structural graph
Laplacian. [44] proposed a DTI penalty term to fuse functional
information and structural information for brain connectivity
networks with multi-center and multi-channel mechanisms. A
triplet network with a self-attention mechanism was introduced
to map high-order multi-modal representations [45]. Besides,
hypergraph graph neural networks [31], [32] are proposed to
encode hyperstructure. The multi-modal brain networks can be
fed as a nature of hyperedges. However, most of these studies
potentially ignore the heterogeneity between modalities as a
result of a lack of ability to model cross-modality complemen-
tary associations and achieve sub-optimal results. In addition,
there is a lack of joint compositional reasoning over both

functional and structural connectome networks, which plays
a key role in phenotype-connectome association studies.

C. Knowledge distillation

Knowledge distillation (KD) was first proposed for model
compression by reinforcing the student model learning from
the teacher model without a significant drop in performance
[46]. Despite its usage on model compression, KD penal-
izes the predictive distributions with additional knowledge to
improve better generalization ability. By learning transferred
knowledge from a teacher model, the student can approximate
or exceed the teacher model. Based on this mechanism, self-
knowledge distillation is proposed to facilitate the model
training by learning from itself to mitigate overconfidence
and improve performance. [47] implements auxiliary clas-
sifiers to utilize the output of intermediate layers, where
the knowledge in deeper networks is squeezed into shallow
ones. [48] proposed a gating mechanism to filter meaningful
knowledge and achieved consistent improvements for brain
age prediction. [49] implemented self-distillation for capturing
high-level and low-level features to calibrate the neoplasia
identification results. [50] devised a distillation module to
transfer semantic region information from teacher to student
for medical image segmentation. In this study, we utilize the
promising self-distillation mechanism for cross-modal mutual
learning, where mono-modal representations are regularized
with cross-modal contexts.

III. METHOD

Figure 1 illustrates the overall architecture of the proposed
Cross-GNN, which consists of functional (orange), structural
(blue), and cross-modal (green) pathways. The functional
and structural representations are parsed into corresponding
pathways and fed to construct the correspondence matrix.
Inter-modal representations are translated by cross-embedding
in the cross-modal pathway. Moreover, a dynamic multi-
modal graph is built by taking multi-modal representations
as node features and the normalized correspondence matrix
as the adjacency matrix. In addition, a cross-distillation is
implemented in the cross-modal pathway to regularize mono-
modal representations with cross-modal information. In this
section, we introduce the brain network and graph formulation
and then the details of the Cross-GNN approach, including
dynamic multi-modal graph mapping, bilateral graph convo-
lution, cross-distillation, and optimization.

A. Preliminaries

Brain network: Functional connectivity (FC) and struc-
tural connectivity (SC) are derived by mapping processed neu-
roimages into a template. FC and SC are symmetric positive
definite matrices Xfc, Xsc ∈ RM×M , where M denotes the
number of brain regions. Each element xi,j denotes a co-
variance or connectivity strength between the regions i and j.
The brain network is usually formulated as an undirected graph
G = (V,E), where V is a finite set of vertices with |V | =M
and E ∈ RM×M denotes the edges in the graphs. For each
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Fig. 1. Illustration of the proposed Cross-GNN method including functional, structural, and cross-modal pathways. The multi-modal brain networks
are firstly encoded and then formulated into a correspondence matrix Φ for reasoning. The multi-modal representations are cross-embedded and
cross-distilled for cross-modal representation learning.

vertex i, the node feature vector vi is constructed by the i-th
row or column in the matrix vi = {xi,k|k = 1, 2, ...,M}. The
edges are represented by the matrices directly ei,j = xi,j .

Multi-modal brain graph: By taking functional and struc-
tural brain networks, the multi-modal graphs are constructed
as Ĝ = {Gs, Gf}, where Gs and Gf denote the structural
and functional brain network graphs, respectively. Formally,
given a set of multi-modal graphs {Ĝ1, Ĝ2, ..., ĜN} with a
few labeled graph instances, the aim of the study is to decide
the state of the unlabeled graphs as a graph classification task.

Dynamic graph: In this study, our proposed Cross-GNN
leverages the dynamic mechanism to model multi-modal node
representations and interactions by learning mappings: fV :
X → V, fE : X → E. And the learned graphs are denoted as
dynamic graphs. In this study, the adjacent matrix in the multi-
modal graph is built by the correspondence matrix between
functional and structural connectome.

B. Dynamic multi-modal graph mapping

In this section, we leverage the dynamic graph mechanism
to build a dynamic multi-modal graph by parsing fMRI and
DTI into node representations and building a multi-modal
correspondence matrix as the adjacency matrix.

1) Brain network Encoder: Since the multi-modal graphs
are heterogeneous, simply embedding features together might
decrease the performance. One of the keys is how to parse the
brain network of each modality precisely. Formally, we define
an encoder operation ψ to learn representations by:

h = ψ(G), h ∈ RM×H (1)

where M denotes the ROI number and H denotes the hidden
size of the encoded features. The choice of brain network
encoder functions ψ has a crucial influence on the multi-
modal graph representations. For example, a simple way

of embedding a connectivity matrix can be a multi-layer
perception (MLP):

h = ψmlp(G) (2)

The second choice of ψ is by graph embedding. The
absolute values of connectivity are normalized by symmetric
normalized Laplacian:

h = ψgraph(G) = σ(L̂HW ) (3)

L̂ = In −D− 1
2AD− 1

2 (4)

where D denotes the degree matrix of A,A = abs(X). The
graph embedding method facilitates capturing graph topolog-
ical properties.

The third choice of ψ is to tackle the connectivity matrix as
a sequence. Well-known sequence models such as LSTM [51]
and GRU [52] are powerful tools with the gating to capture
long-range sequential relationships and protect the learning
from undesired updates [51]. For example, the GRU layers
take the input brain network matrix X ∈ RM×M as a sequence
with M nodes and M features. Formally, given an input X ,
the node features are embedded by:

h = ψGRU (G) = GRU(X) (5)

Especially, the GRU operation on each parcel k ∈ [1,M ] is
formulated as:

zk = σ(Wz · [ok−1, xk]) (6)
rk = σ(Wr · [ok−1, xk]) (7)

ĥk = tanh(W · [rk ∗ ok−1, xk]) (8)
ok = (1− zk) ∗ ok−1 + zk ∗ ôk (9)

where xk denotes the input vector corresponding to the k-
th brain region, and zk, rk are the update gate and reset gate
respectively. ok is the output of the GRU.

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2023.3294967

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on July 19,2023 at 07:15:51 UTC from IEEE Xplore.  Restrictions apply. 



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 5

2) Correspondence matrix: With the embedded hf and hs,
a soft correspondence matrix Φ is obtained by:

Φ =
hfj (h

s
j)

T + hsj(h
f
j )

T

2
,Φ ∈ RM×M (10)

Each row vector in Φ is a probability distribution over po-
tential correspondences to corresponding nodes. The matrix
can be regarded as the scores for measuring the goodness of
matches between nodes in two modalities. A sinkhorn function
is applied to normalize the matrix, which satisfies doubly
stochastic, where

∑M
j Φ̂i,j = 1.

3) Dynamic graph: By obtaining the normalized correspon-
dence matrix Φ̂, we formulate the normalized correspondence
matrix Φ̂ as the dynamic adjacency matrix. Moreover, we
can project the representations from one modality field into
another (i.e. translate functional/structural representations to
structural/functional representations) by:

ĥf = Φ̂Ths, ĥf ∈ RM×H (11)

ĥs = Φ̂Thf , ĥs ∈ RM×H (12)

With the obtained embedded representations ĥf and ĥs,
the dynamic node features can be built by {ĥf , hf} or
{ĥs, hs}, which represents the translated representations of
functional/structural field.

C. Bilateral Graph Convolution

In this study, a Bilateral Graph Convolution (BGC) is
proposed to perform convolution on the multi-modal graphs.
To tackle the heterogeneous features between modalities, the
BGC module applies convolutions on each field to aggregate
representations of every single modality separately. Moreover,
we implement spatial aggregation on the graphs for message
passing instead of spectral graph convolution. Since the brain
network is fully connected, graph spatial convolution, as well
as spectral graph convolutions, can aggregate global informa-
tion. In this way, the graph spatial convolution is formulated
with Φ̂ as:

hfl+1 = σ(Φ̂hfl W
f
l ),where hf0 = ||{ĥf , hf} (13)

hsl+1 = σ(Φ̂hslW
s
l ),where hs0 = ||{ĥs, hs} (14)

|| denotes a concatenation operation, σ denotes a sigmoid
activation function, and W is a learnable matrix for improving
node representations. The outputs of the BGC layer are further
combined as a feature vector and fed into a multi-layer
perception for classification.

D. Cross-distillation

In the proposed Cross-GNN, there exist heterogeneous
representations, i.e., functional, structural, and multi-modal
compositional features. These features have different yet com-
plementary characteristics in decision-making. In this regard,
we proposed to combine the advantages of this heterogeneous
information and conduct the training by mutual learning to
improve the representations further. In addition, to avoid
heterogeneity, we develop a joint optimization strategy based

on a self-distillation framework and design an auxiliary branch
for cross-distillation.

As is shown in Figure 1, two auxiliary branches are im-
plemented for functional and structural outputs. The auxiliary
branches are built by three-layer multi-layer perception with
leaky ReLU activation function and dropout. Accordingly,
the three outputs, i.e. functional prediction pf , structural
prediction ps, and multi-modal prediction pm are leveraged
to construct the cross-distillation loss function LCD:

LCD = KL(pm||pf ) +KL(pm||ps) +KL(ps||pf ) (15)

where LCD is obtained by a combination of three KL diver-
gences by measuring output distribution similarity.

However, the reliability of the single-modal representations
should be considered since the model generally does not
have enough knowledge for mutual learning at the early
stage of training. Inspired by the progressive self-knowledge
distillation [53], we propose to gradually balance the mutual
learning loss with the weight α. We apply a linear growth
approach:

αt = αT ×
t

T
(16)

where T is the total epoch for gradual training of α. To
summarize, the self-distillation loss function at t-th epoch can
be obtained as:

LCD,t = αt ·KL(pm||pf )+αt ·KL(pm||ps)+αt ·KL(ps||pf )
(17)

E. Optimization
In the training process, the objective function is constructed

by a combination of a weighted cross-distillation LCD,t and
cross-entropy function LCE :

Lt = LCE(p
m, y) + LCD,t (18)

where y denotes the ground truth. In the inference, the multi-
modal outputs pm are implemented for prediction.

To summarize, the detail of our proposed Cross-GNN is
shown in Algorithm 1:

F. Biomarker Interpretation
The relationship between brain structure and function has

become an increasingly important study in the clinical neuro-
science field [54]–[56]. The correspondence matrices in Cross-
GNN attentively model the multi-modal interactions among
regions, which are feasible to be applied to pinpoint the
key brain biomarkers underlying disease. In this section, we
extracted the correspondence matrix for each subject and per-
formed a group statistical analysis for biomarker detection. To
associate brain disorders with multi-modal correspondence, we
performed the CWAS approach, multi-distance multi-variance
regression (MDMR) [15] for group-wise comparison.

In detail, a distance matrix in the subject space was calcu-
lated for each region. Within each distance matrix, the distance
between multi-modal correspondence patterns Φ for every
possible subject pair among all groups related to region i was
calculated by

diuv = dis(Φ̄u, Φ̄v) (19)
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Algorithm 1: Cross-modal Graph Neural Network
Input: multi-modal brain networks

{Ĝ1, Ĝ2, Ĝ3, ..., Ĝn},where Ĝ = {Gs, Gf};
For each graph G = (V,E,X)

Output: Prediction pm of the test set
1 Calculate dynamic node features: hs = Encoder(xs),

hf = Encoder(xf );
2 Calculate the correspondence matrix:

Φ = 1
2h

f (hs)T + 1
2h

s(hf )T ;
3 Normalize Φ into Φ̂ to satisfy doubly stochastic;
4 Obtain the cross-modality mapping representations:
5 ĥf = Φ̂Ths;
6 ĥs = Φ̂Thf ;
7 for i=1:l do
8 hfi = σ(Φ̂hfi−1w

f
i−1), where hf0 = ||{ĥf , hf};

9 hsi = σ(Φ̂hsi−1w
s
i−1), where hs0 = ||{ĥs, hs};

10 end
11 Readout hm = ||{hfl , hsl };
12 pm ← Readout(hm);
13 pf ← Readout(hs);
14 ps ← Readout(hf );
15 Optimize the objective function Eq. (18)

where dis denotes the distance of multi-modal correspondence
vectors, i.e. Φ̄u, Φ̄v , of subject u and v. In the implementation,
the distance function is obtained by dis(Φ̄u, Φ̄v) = ||Φ̄u −
Φ̄v||2 by reference to previous works [15], [28]. A pseudo F-
statistic analogous to an F-statistic from a standard ANOVA
was performed. The total sum of squares for region i was
obtained as

SSi
T =

1

n

n∑
u=1

n∑
v=u+1

di2uv (20)

where n = n1 +n2, the total number of subjects. Meanwhile,
the within-group sum of squares was formulated By

SSi
W =

1

n1

n∑
u=1

n∑
v=u+1

di2uvε
a
uv +

1

n2

n∑
u=1

n∑
v=u+1

di2uvε
b
uv (21)

where n1 and n2 denote the number of each group respec-
tively. εauv represents the belonging of the subject u and v,
which equals to one when u and v within the same group. And
then the F-statistic score of the region i would be obtained by

F i = (n− 1)
SSi

T − SSi
W

SSi
W

(22)

In addition, a random permutation with 2000 times to
subjectes was applied to simulate the null distribution, and
the pseudo F-statistic score was recomputed for each time.
The p-value was finally calculated by counting the pseudo F-
statistics from permutated values greater than those derived
from the original data. This step was repeated for all ROIs.
The Bonferroni correction was applied to control the false
positive rate. And the p-value < 0.05 after the correction was
determined significant within the experiments.

Finally, to explicitly measure which specific connectivity
pattern is primarily driving the association between inter-
modal correspondence and disease progression, the δ-statistic
was applied here to identify the top five connected network
nodes with the greatest effect size from each seed brain region
[57].

IV. EXPERIMENTS

A. Datasets
In this study, two real-world datasets are employed in this

study, where functional MRI and DTI are aggregated. All
the datasets are enrolled for multi-modal graph classification.
The detailed demographic information is listed in Table I
with gender (Male/Female), age (Mean±Std), and other scale
information (Mean±Std). All three groups were matched for
age and sex.

ADNI Dataset1: The ADNI dataset is a longitudinal and
multi-site multi-modal neuroimaging dataset. In this study, we
collected 442 subjects for evaluation, including 142 healthy
controls (HC) and 151 with mild cognitive impairment (MCI),
and 149 patients with Alzheimer’s disease (AD) from ADNI
1, ADNI2, ADNI GO, and ADNI 3. Each involved participant
includes fMRI and DTI data. We excluded duplicated scans,
and a single scan of fMRI and DTI per subject was collected.
Notably, MCI is considered to be a significant stage for the
preclinical diagnosis of AD. These subjects are divided into
three groups: AD, MCI, and HC, in accordance with the stan-
dard clinical criteria, such as Mini-Mental State Examination
(MMSE) scores and Clinical Dementia Rating (CDR).

Xuanwu dataset: A total of 138 subjects are included in
this dataset, where 53 HCs and 85 subjects with Parkinson’s
Disease (PD) were recruited from the Movement Disorders
Clinic of the Xuanwu Hospital of Capital Medical University.
In the dataset, the HCs were all older than 40 years, with no
family history of movement disorders and no obvious cerebral
lesions found in MR images. The PDs were diagnosed accord-
ing to the MDS Clinical Diagnostic Criteria for Parkinson’s
disease. The Movement Disorder Society Unified Parkinson’s
Disease Rating Scale, part III (UPDRS III) was applied to
evaluate the PDs.

PPMI dataset2: The PPMI dataset includes 53 HCs and 56
PDs. The patients were diagnosed at baseline, and the HCs
were healthy at their first examination. Notably, the PPMI
dataset is also a longitudinal database, and each participant
has multiple scans. We excluded duplicated scans, and a single
scan of fMRI and DTI per subject was collected. The diagnos-
tic criteria of PD followed the inclusion criteria for patients
of the PPMI study (https://www.ppmi-info.org/
study-design/research-documents-and-sops).

B. Preprocessing
All the fMRI images were pre-processed by reference to

the Configurable Pipeline for the Analysis of Connectomes
(C-PAC) pipeline [58], including skull striping, slice timing

1http://www.adni-info.org/
2https://www.ppmi-info.org/
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TABLE I
CHARACTERISTICS OF PARTICIPANTS OF THREE DATASETS.

Dataset Type Sex Age CDR MMSE

ADNI

NC 81/61 75.85±9.7 0.0±0.1 28.9±2.3
MCI 87/64 77.0±11.7 0.5±0.2 26.6±2.8
AD 87/62 76.9±8.2 1.0±0.4 21.8±3.6

F-statistic 0.054 0.825 443.669 219.407
p-value 0.816 0.364 < 0.001 < 0.001

Sex Age MOCA UPDRS III

Xuanwu

NC 23/30 60.8±9.4 25.5±3.2 -
PD 43/42 59.8±8.7 24.0±3.5 25.5±12.8

F-statistic 0.67 0.162 4.256 -
p-value 0.414 0.688 0.041 -

PPMI

NC 34/19 64.1±11.3 27.8±1.8 -
PD 34/22 62.3±9.8 26.3±3.3 23.7±9.7

F-statistic 0.707 1.002 1.72 -
p-value 0.401 0.319 0.193 -

correction, motion correction, global mean intensity normal-
ization, nuisance signal regression with 24 motion param-
eters, and band-pass filtering (0.01-0.08Hz). The functional
images were finally registered into standard anatomical space
(MNI152). The mean time series for a set of regions were
computed and normalized into zero mean and unit variance.
Pearson Coefficient Correlation was applied to measure func-
tional connectivity.

The DTI images were pre-processed by image denoising,
head motion, eddy-current, susceptibility distortion, and field
inhomogeneity correction by MRtrix 3 [59]. We performed
the 2-nd order Integration over Fiber Orientation Distribu-
tions [60] to reconstruct 10 million streamlines. A Spherical-
deconvolution Informed Filtering of Tractograms [61] was
applied to reduce the streamline count to 5 million. The
number of streamlines connecting each pair of brain regions
was used to construct the structural network.

All the pre-processed fMRI and DTI images were mapped
by the brain template for parcellations. In this study, the
images in ADNI and Xuanwu datasets were segmented by
the Schaefer atlas [62], which was parceled by a gradient-
weighted Markov random field approach that identified 100
cortical parcels.

C. Implementation details

In our implementation, the number of layers of bilateral
graph convolution is decided in a grid search from 1 to 4.
The outputs of bilateral graph convolution layers are further
fed into a 3-layer multi-layer perception classifier followed by
a leaky ReLU activation function and a dropout layer. The
learning rate is set as 3e-4, and the weight decay is 5e-5.
All the models in this study are trained for 600 epochs and
would be stopped early when the loss has not been decreased
for 100 epochs. We trained the models with PyTorch on one
NVIDIA 2080-Ti GPU. 10-fold cross-validation was applied
for evaluation, where 10% samples were randomly selected
for testing for each fold. For all experiments, we evaluated the
performance in terms of diagnosis accuracy (Acc), sensitivity

(Sen), and specificity (Spe). Our code is available at https:
//github.com/podismine/Cross-GNN.

D. Competitive methods
In this study, we compare our proposed Cross-GNN with

baseline machine learning approaches and well-estimated
graph methods. These methods include:

SVM and MLP. The conventional machine learning meth-
ods of the support vector machine (SVM) and multi-layer
perception (MLP) are compared as a baseline of classification.
The upper matrix of the brain networks is fed into the
classifiers to give a score for each subject. The layer number
of MLP is searched from 1 to 4.

Population-GCN [22], BrainNetCNN [18] and BrainGNN
[8]. In population-GCN, a population graph is built, where
each node is represented by concatenating the vectorized upper
matrix of the brain networks of a subject. Key features were
selected by recursive feature elimination and vectorized into
a set for each vertex and then concatenated. The number
of selected features is searched. The adjacency matrix was
constructed by the phenotype values as well as the similarity
between node features. Moreover, BrainNetCNN was imple-
mented by multiple convolution layers to perform multi-modal
data, where functional and structural connectivity matrices
are concatenated by channel. In BrainGNN, the original par-
tial Pearson and full correlation coefficients are replaced by
functional and structural connectivity. The three models are
implemented as baseline deep learning models for comparison.

M-GCN [43], HGNN [32], DHGNN [31]. These three
models are among state-of-the-art multi-modal network ap-
proaches. M-GCN aggregates functional representations by
regularizing with the structural graph Laplacian. Hypergraph
graph neural network (HGNN) encodes multi-modal connec-
tivity by hyperstructure into hyperedges. The dynamic graph
hyper-neutral network (DHGNN) extends the HGNN into
a dynamic graph. These three models are implemented by
reference to the originally proposed architecture.

MMP-GCN [44], Triplet Attention Network (TAN) [45]
are state-of-the-art networks that are designed specially for
brain disorder diagnosis. In MMP-GCN, we discarded the
multi-center information and applied the gender information
to construct the graph. The layers and heads of self-attention
of the Triplet network are decided with a grid search.

V. RESULTS AND DISCUSSION

A. Hyperparameter setting
In our study, we first evaluated the impact of model hyper-

parameter settings on performance. One key parameter is the
hidden size H . As is shown in Fig. 2 A), our model achieved
the best accuracy performances with the hidden size H = 64
in most cases. The accuracy performances increase when the
hidden size H ranges from 16 to 128 and decrease when the
hidden size H is larger than 128. Another key parameter is the
number of BGC layers l. The layer number decides the multi-
hop neighborhood aggregation and message passing among
multimodal nodes. Fig. 2 B) demonstrates that l = 2 is the
optimal setting except for the classification of NC and MCI.
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Fig. 2. The effect of the setting of A) the hidden size H on the left and B) the number of BGC layers l on the right. The performances are evaluated
on three datasets including the ADNI, the Xuanwu, and the PPMI datasets.

TABLE II
EVALUATIONS OF ENCODERS ON THE ADNI DATASET. THE BEST RESULTS ARE SHOWN IN BOLD.

Type
NC vs MCI MCI vs AD NC vs AD

Acc Sen Spe Acc Sen Spe Acc Sen Spe
ϕMLP 78.9±5.0 82.6±10.9 78.3±8.0 79.1±7.9 89.7±10.1 75.3±8.3 82.4±5.7 88.8±8.4 79.7±7.3
ϕGraph 79.5±4.5 83.5±9.5 79.4±8.0 77.4±4.6 85.7±10.4 75.1±8.0 86.2±5.9 92.4±7.4 83.7±7.6
ϕLSTM 81.3±4.8 85.0±8.9 80.0±9.7 82.0±4.1 90.3±7.1 80.4±4.5 88.6±6.1 94.5±7.1 85.1±10.3
ϕGRU 82.6±4.6 84.6±5.0 82.2±8.4 83.7±6.7 92.6±12.1 80.9±8.9 88.6±6.3 95.9±9.2 85.2±7.7

TABLE III
EVALUATIONS OF ENCODERS ON THE CLASSIFICATION OF NC VS PD ON XUANWU AND PPMI DATASETS. THE BEST RESULTS ARE SHOWN IN BOLD.

Type
NC vs PD (Xuanwu) NC vs PD (PPMI)

Acc Sen Spe Acc Sen Spe
ϕMLP 84.5±5.0 81.6±6.4 92.4±7.7 76.7±7.5 84.1±8.4 73.0±11.3
ϕGraph 83.9±3.2 87.4±9.4 85.5±10.5 81.8±5.2 86.3±6.9 81.5±5.6
ϕLSTM 83.2±3.2 82.9±7.7 87.4±8.8 84.7±5.7 88.1±5.2 81.8±7.5
ϕGRU 87.2±8.1 88.9±9.9 89.0±12.2 84.9±6.1 86.6±6.5 82.5±8.5

As the number of layers is greater than 2, the performances
tend to decrease on all five classification tasks, due to the over-
smoothing problem [63], [64], even with dynamic graphs.

B. Choice of encoder

We further evaluated the classification performance in dif-
ferent ways of brain network encoders. The results on three
datasets are listed in Table II and Table III in terms of accuracy,
sensitivity, and specificity, where the best results are shown
in bold. From the results, we can see that the approaches of
MLP and graph embedding achieve comparable performance
in the Xuanwu dataset. While graph embedding outperforms
MLP on the ADNI and PPMI datasets. The inconsistent results
might be caused by the unclear graph structure, leading to
poor generalizability for representation learning. Moreover, the
LSTM and GRU methods provide long-range dependencies
for modeling graphs as a sequence and outperform graph
embedding and MLP. Generally, GRU has better generalization
ability, which outperforms LSTM in most cases. The other
results of Cross-GNN in this paper will be discussed by using
the GRU encoder.

C. Comparison with competitive methods

Table IV and Table V demonstrate the comparison results on
three datasets, where the mean and standard deviation across
folds are listed. The best results are shown in bold, and the
second-best results are underlined. From the results, we can
see that SVM performs the worst among all the models. This
indicates that the multi-modal data might have nonlinear and
heterogeneous structures, and a simple linear classifier fails to
distinguish the brain disease state. Moreover, compared with
SVM, multi-layer perception improves performances signifi-
cantly, where nonlinear representations are deeply embedded
with multiple layers.

Moreover, BrainNetCNN, Population-GCN, and BrainGNN
achieve further improvements, showing that deep learning
methods such as CNN and GNN are feasible to capture
more meaningful representations. In addition, the multi-modal
graph networks, e.g., M-GCN, outperforms BrainNetCNN,
Population-GCN, and BrainGNN in most cases, where the
complementary information between modalities plays a key
role in improving performance. Especially, DHGNN outper-
forms other baseline approaches in most cases. For example, in
distinguishing MCI from NC, DHGNN achieves an accuracy
of 79.2%, an sensitivity of 83.0%, and a specificity of 77.6%.
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TABLE IV
CLASSIFICATION RESULTS OF DIFFERENT APPROACHES ON THE ADNI DATASET. THE AVERAGE AND STANDARD DEVIATION RESULTS ACROSS

FOLDS ARE DISPLAYED.

NC vs MCI MCI vs AD NC vs AD
Acc Sen Spe Acc Sen Spe Acc Sen Spe

SVM 52.2±9.3 52.4±9.0 52.2±10.6 60.0±9.9 59.8±14.9 60.8±7.8 75.4±9.8 77.5±14.0 75.3±8.8
MLP 70.08±8.8 75.0±15.8 73.1±13.6 69.1±5.4 73.6±9.3 70.1±9.9 77.8±6.5 76.6±6.8 80.4±8.3

BrainNetCNN [18] 72.08±7.1 75.9±9.3 70.4±10.8 71.8±5.0 74.4±6.8 70.8±5.0 81.3±11.3 81.0±11.7 82.1±10.1
Population-GCN [22] 75.5±5.9 82.5±10.0 71.6±8.0 75.5±5.9 80.2±14.4 74.0±5.4 82.0±7.5 85.9±7.5 75.9±8.0

BrainGNN [8] 76.0±5.9 81.1±9.9 71.5±12.6 74.3±4.8 76.6±5.2 73.5±12.8 82.0±2.4 84.6±5.6 76.8±6.1
M-GCN [43] 75.7±6.3 80.1±4.8 72.9±6.1 75.8±6.9 76.1±8.1 75.0±9.0 84.4±5.7 84.1±6.0 85.6±7.1
HGNN [32] 78.1±6.6 80.2±8.4 74.7±9.4 76.8±5.5 83.5±12.8 76.0±7.5 81.4±8.0 82.5±6.1 82.0±12.1

DHGNN [31] 79.2±6.0 83.0±9.9 77.6±7.3 75.8±4.2 85.4±12.9 73.9±8.4 82.5±4.1 86.4±10.7 82.1±11.4
MMP-GCN [44] 80.6±7.6 86.2±10.2 79.5±10.1 79.6±11.0 82.52±14.0 82.2±14.3 84.4±11.1 88.1±12.4 85.1±13.2

TAN [45] 80.2±5.4 82.0±11.1 79.2±11.6 81.2±3.5 83.7±8.8 79.0±9.7 85.9±4.5 89.3±12.9 86.3±10.3
Cross-GNN (Ours) 82.6±4.6 84.6±5.0 82.2±8.4 83.7±6.7 92.6±12.1 80.9±8.9 88.6±6.3 95.9±9.2 85.2±7.7

TABLE V
CLASSIFICATION RESULTS OF DIFFERENT APPROACHES ON THE CLASSIFICATION OF NC AND PD ON THE XUANWU AND PPMI DATASETS. THE

AVERAGE AND STANDARD DEVIATION RESULTS ACROSS FOLDS ARE DISPLAYED.

NC vs PD (Xuanwu) NC vs PD (PPMI)
Acc Sen Spe Acc Sen Spe

SVM 64.9±12.7 63.1±9.9 69.7±21.3 63.1±8.0 65.1±8.8 61.4±9.7
MLP 76.8±8.9 76.4±10.7 81.1±13.6 73.7±7.0 76.7±7.6 73.2±8.1

BrainNetCNN [18] 75.6±9.7 77.6±16.5 87.9±9.3 78.7±8.1 83.3±11.7 78.3±11.1
Population-GCN [22] 76.1±7.1 83.3±12.8 75.1±12.3 80.5±12.0 80.2±13.6 84.8±8.3

BrainGNN [8] 76.7±8.6 80.0±12.3 74.3±12.5 79.7±6.6 82.0±11.6 76.7±9.1
M-GCN [43] 81.3±4.6 80.0±7.6 86.1±9.9 79.4±7.6 80.4±11.9 84.5±11.5
HGNN [32] 77.7±9.8 75.3±7.5 89.3±9.8 83.0±4.1 85.1±9.3 82.7±9.9

DHGNN [31] 78.1±6.8 80.5±10.2 83.6±12.3 83.8±5.7 80.9±8.1 84.7±8.2
MMP-GCN [44] 81.3±9.8 73.7±13.3 83.6±10.5 81.4±9.1 81.7±11.8 80.7±11.1

TAN [45] 82.8±5.8 83.3±13.4 82.9±10.7 82.1±9.2 81.7±16.3 83.6±13.0
Cross-GNN (Ours) 87.2±8.1 88.9±9.9 89.0±12.2 84.9±6.1 86.6±6.5 82.5±8.5

Finally, compared with these approaches, our proposed Cross-
GNN further improves the accuracy on the ADNI dataset (NC
vs. MCI: 82.6%; MCI vs. AD: 83.7%; NC vs. AD: 88.6%), the
Xuanwu dataset (NC vs. PD: 87.2%), and the PPMI dataset
(NC vs. PD: 84.9%). In particular, compared with the state-
of-the-art Transformer model, TAN, 4.4% improvements are
achieved in the classification of NC vs. PD on the Xuanwu
dataset. We suspect that the improvements might be caused
by the powerful cross-modality correspondence reasoning that
captures inter-modal dependencies to aggregate multi-modal
representations.

D. Ablation Study
As is shown in Eq.18, the objective function is composed

of two parts, including the cross-entropy loss and cross-
distillation loss. To investigate the effectiveness of cross-
distillation loss, we compared it with other combinations in
Table VI, where the KL(pm||pf/s) term denotes the cross-
distillation between multi-modal and mono-modal knowledge.
The function KL(ps||pf ) represents that between functional
and structural knowledge.

From the results, we can see that the two types could
enhance performance in most cases. However, neither of these
two components contributes to consistent improvements in the

three datasets. For example, there is a drop in the performance
in distinguishing AD from NC (-1.7%) with cross-mono-
modal learning. However, the best performances are achieved
on all tasks when we combine the two components. We
suspect that with cross-mono-modal distillation, the mono-
modal representations are regularized with a hint of multi-
modal and cross-modal information. And in this way, mono-
modal learning is equipped with more meaningful knowledge,
resulting in improved diversity of representations.

Moreover, we evaluated the relaxation coefficient αt by
adjusting αT in Eq. (16). The results on three datasets are
plotted in Fig. 3. In Fig. 3 A), the red, green, and blue dotted
lines indicate the classification results of NC vs. MCI, MCI vs.
AD, and NC vs. AD, respectively, and the results of NC vs. PD
on the Xuanwu and PPMI datasets are shown in Fig. 3 B). With
the value of αT increasing, the performances are enhanced and
then dropped slightly. It is reasonable that the self-knowledge
distillation might lead to over-regularization, which could be
mitigated by the knowledge distillation coefficient αT to some
extent. In addition, on the ADNI dataset, the best performances
are achieved with the αT value of 0.9 in NC vs. MCI, 0.8 in
MCI vs. AD, and 0.8 in NC vs. AD. While on the Xuanwu and
PPMI datasets, the value of 0.8 is optimal for the classification
of NC and PD.
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TABLE VI
ABLATION STUDIES ON THE KNOWLEDGE DISTILLATION IN THE METHOD. THE COMPONENTS EVOLVED ARE LISTED IN THE TABLE WITH ✓.

ADNI Xuanwu PPMI
KL(pm||pf/s) KL(ps||pf ) NC vs MCI MCI vs AD NC vs AD NC vs PD NC vs PD

80.9±5.0 80.8± 4.2 88.6±6.6 82.6±6.5 82.5±8.7
✓ 81.4±5.2 80.3±4.4 86.9±8.1 83.9±7.9 83.7±7.3

✓ 82.6±3.6 81.4±4.1 88.6±6.3 85.9±8.1 83.7±4.2
✓ ✓ 82.6±4.6 83.7±6.7 88.6±6.3 87.2±8.1 84.9±6.1

Fig. 3. The effect of the setting of the weight αT of cross-distillation loss LCDon three datasets. A) The results on the ADNI dataset are shown
in dotted lines, where the accuracy of NC VS MCI is shown in red, MCI VS AD in green, and NC VS AD in blue. B) The results of NC VS PD on the
Xuanwu and PPMI datasets are shown in red and green lines.

E. Evaluation on inter-center generalization
To evaluate the generalization ability and reproducibility,

we further apply the Xuanwu and the PPMI datasets for inter-
center testing, where the models are trained on the Xuanwu
datasets and validated on the PPMI dataset. The experiments
are repeated 10 times and the averaged results as well as
deviations are displayed. Table VII shows the performances
of our proposed Cross-GNN model, compared with other
baseline models and state-of-the-art networks. The best results
are shown in bold, and the second best are underlined. Our
proposed method achieves the best performance among all the
models, with an accuracy of 78.1%, a sensitivity of 80.5%,
and a specificity of 79.6%. Compared with the results that are
obtained by trained and validated on the same PPMI dataset,
there is a 6%± drop in performances. One main reason is
that the criteria for including participants in training Xuanwu
dataset are different from the test PPMI database. For example,
the average MoCA score of PD in the Xuanwu dataset is 24.0,
while the average in the PPMI dataset is 26.3. Besides, the
various scan parameters and MRI protocol settings also affect
the performance. Overall, our Cross-GNN could achieve the
best inter-center generalization ability among all the state-of-
the-art models.

F. Biomarker detection
The correspondence matrices learned by Cross-GNN at-

tentively model the multi-modal interactions among regions.
In this section, we extracted the correspondence matrix for
each subject and performed a group statistical analysis for
biomarker detection.

Fig. 4 and Fig. 5 demonstrate the statistical analysis of the
ADNI, the Xuanwu, and the PPMI datasets on the left side,

TABLE VII
EVALUATIONS ON THE INTER-CENTER GENERALIZATION OF VARIOUS

APPROACHES. ALL MODELS ARE TRAINED ON THE XUANWU DATASET

AND EVALUATED ON THE PPMI DATASET. THE EXPERIMENTS ARE

REPEATED 10 TIMES AND THE AVERAGED RESULTS AS WELL AS

DEVIATIONS ARE SHOWN IN THE TABLE.

NC vs PD (inter-center)
Acc Sen Spe

SVM 60.1±3.1 61.9±3.3 58.3±3.2
MLP 70.5±4.8 75.4±7.8 68.8±7.5

BrainNetCNN [18] 72.6±5.2 78.0±10.8 74.9±13.8
Population-GCN [22] 75.0±6.1 79.0±7.7 73.0±6.7

BrainGNN [8] 77.1±6.9 82.0±11.5 74.7±9.1
M-GCN [43] 72.5±4.8 74.8±5.8 72.4±10.7
HGNN [32] 73.0±4.2 72.8±7.0 75.6±11.3

DHGNN [31] 74.2±3.2 71.1±6.3 78.4±9.4
MMP-GCN [44] 76.9±12.7 73.9±6.6 81.5±8.1

TAN [45] 74.1±7.3 72.5±11.3 76.8±12.6
Cross-GNN (Ours) 78.1±4.6 80.5±8.3 79.6±4.1

where the regions with significant differences (p-value < 0.05)
are displayed with the statistical values (cutoff from 2 to 5).
As is shown in the figures, the number of significant regions
is correlated to the classification performances. For example,
in the ADNI dataset, the number of regions with significant
differences in the classification of NC and PD is the largest,
which corresponds to the results in Table IV, i.e., NC VS AD
outperforms the tasks of NC VS MCI and MCI VS AD.

In detail, the right posterior cingulate gyrus in the default
mode network was found with significant changes in the ADNI
dataset among all tasks. Previous studies demonstrate that
the AD process has been hypothetically explained by PCC
hypofunction due to the effect of the degeneration of cingulum
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Fig. 4. Group-wise comparison on (a) NC vs. MCI, (b) MCI vs. AD. (c) NC vs. AD. Left: statistical results (F-statistic value) on the correspondence
matrices on the Xuanwu dataset, where only significant regions (adjusted p-value < 0.05) are displayed. Right: key connectivity pairs returned
from the significant regions. L: the left hemisphere. R: the right hemisphere. DMN: the default mode network. DorsAttn: the dorse attention network.
Vis: the visual network. Cont: the frontoparietal network. PFC: the prefrontal cortex. FEF: the frontal eye fields. OFC: the orbital frontal cortex. Temp:
the temporal. Par: the parietal. Cing: the cingulate.

fibers [65]. And PCC hypofunction could be caused by early
PCC atrophy, which has been proven to be a useful biomarker
[66]. Moreover, the right prefrontal cortex is found with signif-
icant changes in the Xuanwu and the PPMI datasets (Xuanwu:
R.DMN.PFCv.2; PPMI: R.DMN.PFCv.1). PD is shown to be
associated with impaired frontal lobe functions, which include
defective use of memory stores and a dysexecutive syndrome
of processes that are commonly considered to be controlled by
the prefrontal cortex [67], [68]. Our finding is in agreement
with previous studies that showed patients with PD to have
changes in the prefrontal cortex, which plays a critical role
in postural control in older adults [69], [70]. In addition, key
biomarker regions such as the somatomotor network were also
found in the PPMI dataset.

We further empirically selected five pair-wise connectivity
with the greatest effect size for each seed region as the key
structural connectivity. These connections are displayed on
the right side of Fig. 4 and Fig. 5. Notably, during the AD
progress, brain function changes are found in connectivity

pairs, i.e. pairs between the right posterior cingulate gyrus in
the default mode network and visual network, limbic network,
and dorsal and ventral attention network. This indicates that
the right posterior cingulate is highly functionally heteroge-
neous, but also has a central role in supporting internally-
directed cognition [71], [72]. Moreover, reduced metabolism
in the PCC is an early feature of Alzheimer’s disease and
is often present before a definitive clinical diagnosis [73],
[74]. Our work has consistently shown abnormal PCC function
in the early stage of AD. In addition, connections between
the right prefrontal cortex in the default network and other
networks (e.g. the somatomotor network, the frontal-parietal
control network, and the limbic network) are found in the PD
progress, which is consistent with previous studies [75]–[77].
These findings indicate that our proposed Cross-GNN could
locate meaningful and interpretative key biomarkers.

VI. CONCLUSION

In this study, we propose a cross-modal graph neural net-
work for multi-modal connectome analysis, which exploits a
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Fig. 5. Group-wise comparison on NC vs. PD on (a) the Xuanwu dataset, and (b) the PPMI dataset. Left: statistical results (F-statistic value) on
the correspondence matrices, where only significant regions (adjusted p-value < 0.05) are displayed. Right: key connectivity pairs returned from
the significant regions. L: the left hemisphere. R: the right hemisphere. DMN: the default mode network. DorsAttn: the dorse attention network.
SomMot: the somotomoto network. PFC: the prefrontal cortex. Temp: the temporal. OFC: the orbital frontal cortex.

dynamic graph for tighter coupling of multi-modal represen-
tations with regularized knowledge. Cross-modal embedding
and knowledge distillation are leveraged for mutual learning
to capture inter-modal dependencies. Moreover, the derived
correspondence matrix provides a compositional space for
reasoning multi-modal dependencies. Experimental results on
two datasets demonstrate that our proposed method is feasible
to model multi-modal graphs and outperforms other state-
of-the-art methods. In addition, our Cross-GNN provides a
way of locating the discriminative multi-modal biomarkers.
The proposed method has great potential for multi-modal
connectome-based brain disorder diagnosis as well as multi-
modal biomarker detection.
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